Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
nonprincipal Dirichlet character; Hölder's inequality; $j$th symmetric power $L$-function; holomorphic cusp form
Summary:
We investigate the average behavior of the $n$th normalized Fourier coefficients of the $j$th ($j \geq 2$ be any fixed integer) symmetric power $L$-function (i.e., $L(s,{\rm sym}^{j}f)$), attached to a primitive holomorphic cusp form $f$ of weight $k$ for the full modular group $SL(2,\mathbb {Z})$ over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum $$ S_j^*:= \sum_{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\leq x (a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in \mathbb {Z}^{6}} \lambda ^{2}_{{\rm sym}^{j}f}(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}), $$ where $x$ is sufficiently large, and $$ L(s,\mathrm{sym}^{j}f):=\sum _{n=1}^{\infty }\frac {\lambda_{\mathrm{sym}^{j}f}(n)}{n^{s}}. $$ When $j=2$, the error term which we obtain improves the earlier known result.
References:
[1] Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30 (2017), 205-224. DOI 10.1090/jams/860 | MR 3556291 | Zbl 1352.11065
[2] Deligne, P.: La conjecture de Weil. I. Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. DOI 10.1007/BF02684373 | MR 0340258 | Zbl 0287.14001
[3] Fomenko, O. M.: Identities involving coefficients of automorphic $L$-functions. J. Math. Sci., New York 133 (2006), 1749-1755. DOI 10.1007/s10958-006-0086-x | MR 2119744 | Zbl 1094.11018
[4] Good, A.: The square mean of Dirichlet series associated with cusp forms. Mathematika 29 (1982), 278-295. DOI 10.1112/S0025579300012377 | MR 0696884 | Zbl 0497.10016
[5] Granville, A., Soundararajan, K.: Multiplicative number theory: The pretentious approach. Available at https://dms.umontreal.ca/ {andrew/PDF/BookChaps1n2.pdf}.
[6] He, X.: Integral power sums of Fourier coefficients of symmetric square $L$-functions. Proc. Am. Math. Soc. 147 (2019), 2847-2856. DOI 10.1090/proc/14516 | MR 3973888 | Zbl 1431.11062
[7] Heath-Brown, D. R.: The twelfth power moment of the Riemann-function. Q. J. Math., Oxf. II. Ser. 29 (1978), 443-462. DOI 10.1093/qmath/29.4.443 | MR 0517737 | Zbl 0394.10020
[8] Ivić, A.: Exponent pairs and the zeta-function of Riemann. Stud. Sci. Math. Hung. 15 (1980), 157-181. MR 0681438 | Zbl 0455.10025
[9] Jiang, Y., Lü, G.: On the higher mean over arithmetic progressions of Fourier coefficients of cusp forms. Acta Arith. 3 (2014), 231-252. DOI 10.4064/aa166-3-2 | MR 3283621 | Zbl 1323.11023
[10] Jutila, M.: Lectures on a Method in the Theory of Exponential Sums. Lectures on Mathematics and Physics. Mathematics. Tata Institute of Fundamental Research 80. Springer, Berlin (1987). MR 0910497 | Zbl 0671.10031
[11] Krätzel, E.: Analytische Funktionen in der Zahlentheorie. Teubner-Texte zur Mathematik 139. B. G. Teubner, Stuttgart (2000). DOI 10.1007/978-3-322-80021-3 | MR 1889901 | Zbl 0962.11001
[12] Lao, H.: On the fourth moment of coefficients of symmetric square $L$-function. Chin. Ann. Math., Ser. B 33 (2012), 877-888. DOI 10.1007/s11401-012-0746-8 | MR 2996556 | Zbl 1279.11052
[13] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687-716. DOI 10.1093/qmath/haq012 | MR 2825478 | Zbl 1269.11044
[14] Loh, W. K. A.: Limitation to the asymptotic formula in Waring's problem. Acta Arith. 74 (1996), 1-15. DOI 10.4064/aa-74-1-1-15 | MR 1367574 | Zbl 0847.11050
[15] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 1-116. DOI 10.1007/s10240-021-00127-3 | MR 4349240 | Zbl 07458825
[16] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. II. Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 117-152. DOI 10.1007/s10240-021-00126-4 | MR 4349241 | Zbl 07458826
[17] Sharma, A., Sankaranarayanan, A.: Average behavior of the Fourier coefficients of symmetric square $L$-function over some sequence of integers. Integers 22 (2022), Article ID A74, 17 pages. MR 4467003 | Zbl 07604107
[18] Sharma, A., Sankaranarayanan, A.: Discrete mean square of the coefficients of symmetric square $L$-functions on certain sequence of positive numbers. Res. Number Theory 8 (2022), Article ID 19, 13 pages. DOI 10.1007/s40993-022-00319-8 | MR 4392068 | Zbl 1498.11177
[19] Sharma, A., Sankaranarayanan, A.: Higher moments of the Fourier coefficients of symmetric square $L$-functions on certain sequence. Rend. Circ. Mat. Palermo (2) (2023), 1399-1416. DOI 10.1007/s12215-022-00740-z | MR 4559106 | Zbl 07670402
[20] Tang, H.: Estimates for the Fourier coefficients of symmetric square $L$-functions. Arch. Math. 100 (2013), 123-130. DOI 10.1007/s11401-016-1013-1 | MR 3020126 | Zbl 1287.11061
[21] Vaughan, R. C.: The Hardy-Littlewood Method. Cambridge Tracts in Mathematics 125. Cambridge University Press, Cambridge (1997). DOI 10.1017/CBO9780511470929 | MR 1435742 | Zbl 0868.11046
[22] Zhai, S.: Average behavior of Fourier coefficients of cusp forms over sum of two squares. J. Number Theory 133 (2013), 3862-3876. DOI 10.1016/j.jnt.2013.05.013 | MR 3084303 | Zbl 1295.11041
Partner of
EuDML logo