[3] Chowla, S.:
On some infinite series involving arithmetical functions. Proc. Indian Acad. Sci. Sect. A 5 (1937), 511-513.
MR 1829818 |
Zbl 0017.00505
[8] Hamburger, H.:
Über einige Beziehungen, die mit der Funktionalgleichung der Riemannschen $\zeta$-Funktion äquivalent sind. Math. Ann. 85 (1922), 129-140 German \99999JFM99999 48.1214.01.
DOI 10.1007/BF01449611 |
MR 1512054
[9] Hardy, G. H., Littlewood, J. E.:
Some problems of Diophantine approximation: The lattice-points of a right-angled triangle I., II. Proc. Lond. Math. Soc. (2) 20 (1921), 15-36 \99999JFM99999 48.0197.07.
DOI 10.1112/plms/s2-20.1.15 |
MR 1577360
[10] Hartman, P., Wintner, A.:
On certain Fourier series involving sums of divisors. Trav. Inst. Math. Tbilissi 3 (1938), 113-118.
Zbl 0018.35401
[11] Hecke, E.:
Über analytische Funktionen und die Verteilung von Zahlen mod. Eins. Abh. Math. Semin. Univ. Hamb. 1 (1921), 54-76 German \99999JFM99999 48.0197.03 \99999DOI99999 10.1007/BF02940580 .
DOI 10.1007/BF02940580 |
MR 3069388
[12] Ingham, A. E.:
The Distribution of Prime Numbers. Cambridge Tracts in Mathematics and Mathematical Physics 30. Cambridge University Press, Cambridge (1932).
MR 1074573 |
Zbl 0715.11045
[13] Jaffard, S.:
On Davenport expansions. Fractal Geometry and Applications Proceedings of Symposia in Pure Mathematics 72. AMS, Providence (2004), 273-303.
MR 2112109 |
Zbl 1123.28002
[15] Kanemitsu, S., Tsukada, H.:
Contributions to the Theory of Zeta-Functions: The Modular Relation Supremacy. Series on Number Theory and Its Applications 10. World Scientific, Hackensack (2015),\99999DOI99999 10.1142/8711 .
MR 3329611 |
Zbl 1311.11003
[16] Koksma, J. F.:
Diophantische Approximationen. Springer, Berlin (1974), German \99999MR99999 0344200 .
MR 0344200 |
Zbl 0276.10015
[18] Mikolás, M.:
Mellinsche Transformation und Orthogonalität bei $\zeta(s,u)$. Verallgemeinerung der Riemannschen Funktionalgleichung von $\zeta(s)$. Acta Sci. Math. 17 (1956), 143-164 German \99999MR99999 0089864 .
MR 0089864 |
Zbl 0073.06403
[19] Patkowski, A. E.:
On Popov's formula involving the von Mangoldt function. Pi Mu Epsilon J. 15 (2019), 45-47.
MR 4263971 |
Zbl 1441.11206
[23] Popov, A. I.:
Several series containing primes and roots of $\zeta(s)$. C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 41 (1943), 362-363.
MR 0010581 |
Zbl 0061.08203
[24] Prachar, K.:
Primzahlverteilung. Die Grundlehren der Mathematischen Wissenschaften 91. Springer, Berlin (1957), German.
MR 0516660 |
Zbl 0080.25901
[25] Romanov, N. P.:
Hilbert spaces and the theory of numbers. II. Izv. Akad. Nauk SSSR, Ser. Mat. 15 (1951), 131-152 Russian.
MR 0043122 |
Zbl 0044.04002
[29] Titchmarsh, E. C.:
The Theory of the Riemann Zeta-Function. Oxford University Press, Oxford (1951).
MR 0046485 |
Zbl 0042.07901
[30] Walfisz, A. A.:
On the sums of the coefficients of certain Dirichlet series. Soobshch. Akad. Nauk Gruz. SSR 26 (1961), 9-16 Russian.
MR 0142514 |
Zbl 0136.33204