[3] Burenkov, V. I., Guliyev, H. V.:
Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces. Stud. Math. 163 (2004), 157-176.
DOI 10.4064/sm163-2-4 |
MR 2047377 |
Zbl 1044.42015
[6] Hashimoto, D., Sawano, Y., Shimomura, T.:
Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces over quasi-metric measure spaces. Colloq. Math. 161 (2020), 51-66.
DOI 10.4064/cm7535-4-2019 |
MR 4085112 |
Zbl 1464.46043
[14] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.:
An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces $L^{1,\nu,\beta}(G)$. Hiroshima Math. J. 38 (2008), 425-436.
DOI 10.32917/hmj/1233152779 |
MR 2477751 |
Zbl 1175.31005
[15] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.:
Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials. J. Math. Soc. Japan 62 (2010), 707-744.
DOI 10.2969/jmsj/06230707 |
MR 2648060 |
Zbl 1200.26007
[18] Mizuta, Y., Shimomura, T., Sobukawa, T.:
Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces. Osaka J. Math. 46 (2009), 255-271.
MR 2531149 |
Zbl 1186.31003
[21] Nakai, E.:
Generalized fractional integrals on Orlicz-Morrey spaces. Banach and Function Spaces Yokohama Publishers, Yokohama (2004), 323-333.
MR 2146936 |
Zbl 1118.42005
[28] Sawano, Y., Shigematsu, M., Shimomura, T.:
Generalized Riesz potentials of functions in Morrey spaces $L^{(1,\varphi;\kappa)}(G)$ over non-doubling measure spaces. Forum Math. 32 (2020), 339-359.
DOI 10.1515/forum-2019-0140 |
MR 4069939 |
Zbl 1436.42029
[30] Sawano, Y., Shimomura, T.:
Maximal operator on Orlicz spaces of two variable exponents over unbounded quasi-metric measure spaces. Proc. Am. Math. Soc. 147 (2019), 2877-2885.
DOI 10.1090/proc/14225 |
MR 3973891 |
Zbl 1416.42025
[33] Sihwaningrum, I., Sawano, Y.:
Weak and strong type estimates for fractional integral operators on Morrey spaces over metric measure spaces. Eurasian Math. J. 4 (2013), 76-81.
MR 3118893 |
Zbl 1277.42019