Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Riesz potential; Sobolev's inequality; Orlicz-Morrey space; metric measure space; non-doubling measure
Summary:
Our aim is to give Sobolev-type inequalities for Riesz potentials of functions in Orlicz-Morrey spaces of an integral form over non-doubling metric measure spaces as an extension of T. Ohno, T. Shimomura (2022). Our results are new even for the doubling metric measure spaces.
References:
[1] Adams, D. R.: A note on Riesz potentials. Duke Math. J. 42 (1975), 765-778. DOI 10.1215/S0012-7094-75-04265-9 | MR 458158 | Zbl 0336.46038
[2] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics 17. European Mathematical Society, Zürich (2011). DOI 10.4171/099 | MR 2867756 | Zbl 1231.31001
[3] Burenkov, V. I., Guliyev, H. V.: Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces. Stud. Math. 163 (2004), 157-176. DOI 10.4064/sm163-2-4 | MR 2047377 | Zbl 1044.42015
[4] Cruz-Uribe, D. V., Shukla, P.: The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type. Stud. Math. 242 (2018), 109-139. DOI 10.4064/sm8556-6-2017 | MR 3778907 | Zbl 1397.42009
[5] Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 688 (2000), 101 pages. DOI 10.1090/memo/0688 | MR 1683160 | Zbl 0954.46022
[6] Hashimoto, D., Sawano, Y., Shimomura, T.: Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces over quasi-metric measure spaces. Colloq. Math. 161 (2020), 51-66. DOI 10.4064/cm7535-4-2019 | MR 4085112 | Zbl 1464.46043
[7] Hedberg, L. I.: On certain convolution inequalities. Proc. Am. Math. Soc. 36 (1972), 505-510. DOI 10.1090/S0002-9939-1972-0312232-4 | MR 0312232 | Zbl 0283.26003
[8] Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001). DOI 10.1007/978-1-4613-0131-8 | MR 1800917 | Zbl 0985.46008
[9] Hurri-Syrjänen, R., Ohno, T., Shimomura, T.: On Trudinger-type inequalities in Orlicz-Morrey spaces of an integral form. Can. Math. Bull. 64 (2021), 75-90. DOI 10.4153/S0008439520000223 | MR 4242993 | Zbl 1472.46040
[10] Kairema, A.: Two-weight norm inequalities for potential type and maximal operators in a metric space. Publ. Mat., Barc. 57 (2013), 3-56. DOI 10.5565/PUBLMAT_57113_01 | MR 3058926 | Zbl 1284.42055
[11] Kairema, A.: Sharp weighted bounds for fractional integral operators in a space of homogeneous type. Math. Scand. 114 (2014), 226-253. DOI 10.7146/math.scand.a-17109 | MR 3206387 | Zbl 1302.47075
[12] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces. Bull. Sci. Math. 137 (2013), 76-96. DOI 10.1016/j.bulsci.2012.03.008 | MR 3007101 | Zbl 1267.46045
[13] Maeda, F.-Y., Ohno, T., Shimomura, T.: Boundedness of the maximal operator on Musielak-Orlicz-Morrey spaces. Tohoku Math. J. (2) 69 (2017), 483-495. DOI 10.2748/tmj/1512183626 | MR 3732884 | Zbl 1387.42017
[14] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces $L^{1,\nu,\beta}(G)$. Hiroshima Math. J. 38 (2008), 425-436. DOI 10.32917/hmj/1233152779 | MR 2477751 | Zbl 1175.31005
[15] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials. J. Math. Soc. Japan 62 (2010), 707-744. DOI 10.2969/jmsj/06230707 | MR 2648060 | Zbl 1200.26007
[16] Mizuta, Y., Shimomura, T.: Continuity properties of Riesz potentials of Orlicz functions. Tohoku Math. J. (2) 61 (2009), 225-240. DOI 10.2748/tmj/1245849445 | MR 2541407 | Zbl 1181.46026
[17] Mizuta, Y., Shimomura, T.: Sobolev's inequality for Riesz potentials of functions in Morrey spaces of integral form. Math. Nachr. 283 (2010), 1336-1352. DOI 10.1002/mana.200710122 | MR 2731137 | Zbl 1211.46026
[18] Mizuta, Y., Shimomura, T., Sobukawa, T.: Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces. Osaka J. Math. 46 (2009), 255-271. MR 2531149 | Zbl 1186.31003
[19] C. B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43 (1938), 126-166. DOI 10.1090/S0002-9947-1938-1501936-8 | MR 1501936 | Zbl 0018.40501
[20] Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166 (1994), 95-103. DOI 10.1002/mana.19941660108 | MR 1273325 | Zbl 0837.42008
[21] Nakai, E.: Generalized fractional integrals on Orlicz-Morrey spaces. Banach and Function Spaces Yokohama Publishers, Yokohama (2004), 323-333. MR 2146936 | Zbl 1118.42005
[22] Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. 1997 (1997), 703-726. DOI 10.1155/S1073792897000469 | MR 1470373 | Zbl 0889.42013
[23] Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. 1998 (1998), 463-487. DOI 10.1155/S1073792898000312 | MR 1626935 | Zbl 0918.42009
[24] Ohno, T., Shimomura, T.: On Sobolev-type inequalities on Morrey spaces of an integral form. Taiwanese J. Math. 26 (2022), 831-845. DOI 10.11650/tjm/220203 | MR 4484273 | Zbl 07579496
[25] Peetre, J.: On the theory of $L_{p,\lambda}$ spaces. J. Funct. Anal. 4 (1969), 71-87. DOI 10.1016/0022-1236(69)90022-6 | MR 0241965 | Zbl 0175.42602
[26] Samko, N. G., Samko, S. G., Vakulov, B. G.: Weighted Sobolev theorem in Lebesgue spaces with variable exponent. J. Math. Anal. Appl. 335 (2007), 560-583. DOI 10.1016/j.jmaa.2007.01.091 | MR 2340340 | Zbl 1142.46018
[27] Sawano, Y.: Sharp estimates of the modified Hardy-Littlewood maximal operator on the nonhomogeneous space via covering lemmas. Hokkaido Math. J. 34 (2005), 435-458. DOI 10.14492/hokmj/1285766231 | MR 2159006 | Zbl 1088.42010
[28] Sawano, Y., Shigematsu, M., Shimomura, T.: Generalized Riesz potentials of functions in Morrey spaces $L^{(1,\varphi;\kappa)}(G)$ over non-doubling measure spaces. Forum Math. 32 (2020), 339-359. DOI 10.1515/forum-2019-0140 | MR 4069939 | Zbl 1436.42029
[29] Sawano, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents. Collect. Math. 64 (2013), 313-350. DOI 10.1007/s13348-013-0082-7 | MR 3084400 | Zbl 1280.31001
[30] Sawano, Y., Shimomura, T.: Maximal operator on Orlicz spaces of two variable exponents over unbounded quasi-metric measure spaces. Proc. Am. Math. Soc. 147 (2019), 2877-2885. DOI 10.1090/proc/14225 | MR 3973891 | Zbl 1416.42025
[31] Sawano, Y., Shimomura, T., Tanaka, H.: A remark on modified Morrey spaces on metric measure spaces. Hokkaido Math. J. 47 (2018), 1-15. DOI 10.14492/hokmj/1520928055 | MR 3773722 | Zbl 1390.42032
[32] Serrin, J.: A remark on the Morrey potential. Control Methods in PDE-Dynamical Systems Contemporary Mathematics 426. AMS, Providence (2007), 307-315. DOI 10.1090/conm/426 | MR 2311532 | Zbl 1129.31003
[33] Sihwaningrum, I., Sawano, Y.: Weak and strong type estimates for fractional integral operators on Morrey spaces over metric measure spaces. Eurasian Math. J. 4 (2013), 76-81. MR 3118893 | Zbl 1277.42019
[34] Stempak, K.: Examples of metric measure spaces related to modified Hardy-Littlewood maximal operators. Ann. Acad. Sci. Fenn., Math. 41 (2016), 313-314. DOI 10.5186/aasfm.2016.4119 | MR 3467713 | Zbl 1337.42023
[35] Strömberg, J.-O.: Weak type $L^1$ estimates for maximal functions on non-compact symmetric spaces. Ann. Math. (2) 114 (1981), 115-126. DOI 10.2307/1971380 | MR 625348 | Zbl 0472.43010
[36] Terasawa, Y.: Outer measures and weak type $(1,1)$ estimates of Hardy-Littlewood maximal operators. J. Inequal. Appl. 2006 (2006), Article ID 15063, 13 pages. DOI 10.1155/JIA/2006/15063 | MR 2215476 | Zbl 1090.42012
Partner of
EuDML logo