Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$n$-ideal; $n$-submodule; primary submodule
Summary:
We investigate some properties of $n$-submodules. More precisely, we find a necessary and sufficient condition for every proper submodule of a module to be an $n$-submodule. Also, we show that if $M$ is a finitely generated $R$-module and $ \sqrt {{{\rm Ann} }_R(M)}$ is a prime ideal of $R$, then $M$ has $n$-submodule. Moreover, we define the notion of \hbox {$G.n$-submodule}, which is a generalization of the notion of $n$-submodule. We find some characterizations of $G.n$-submodules and we examine the way the aforementioned notions are related to each other.
References:
[1] Ahmadi, M., Moghaderi, J.: $n$-submodules. Iran. J. Math. Sci. Inform. 17 (2022), 177-190. DOI 10.52547/ijmsi.17.1.177 | MR 4411831 | Zbl 7541073
[2] Ansari-Toroghy, H., Farshadifar, F.: The dual notion of multiplication modules. Taiwanese J. Math. 11 (2007), 1189-1201. DOI 10.11650/twjm/1500404812 | MR 2348561 | Zbl 1137.16302
[3] Atiyah, M. F., Macdonald, I. G.: An Introduction to Commutative Algebra. Addision-Wesley, Reading (1969). MR 0242802 | Zbl 0175.03601
[4] Barnard, A.: Multiplication modules. J. Algebra 71 (1981), 174-178. DOI 10.1016/0021-8693(81)90112-5 | MR 0627431 | Zbl 0468.13011
[5] El-Bast, Z. A., Smith, P. F.: Multiplication modules. Commun. Algebra 16 (1988), 755-779. DOI 10.1080/00927878808823601 | MR 0932633 | Zbl 0642.13002
[6] Abdullah, N. Khalid: Irreducible submoduls and strongly irreducible submodules. Tikrit J. Pure Sci. 17 (2012), 219-224.
[7] Koç, S., Tekir, Ü.: $r$-submodules and $sr$-submodules. Turk. J. Math. 42 (2018), 1863-1876. DOI 10.3906/mat-1702-20 | MR 3843951 | Zbl 1424.13019
[8] Lu, C.: Prime submodules of modules. Comment. Math. Univ. St. Pauli 33 (1984), 61-69. MR 0741378 | Zbl 0575.13005
[9] Macdonald, I. G.: Secondary representation of modules over a commutative ring. Convegno di Algebra Commutativa Symposia Mathematica 11. Academic Press, London (1973), 23-43. MR 0342506 | Zbl 0271.13001
[10] McCasland, R. L., Moore, M. E.: Prime submodules. Commun. Algebra 20 (1992), 1803-1817. DOI 10.1080/00927879208824432 | MR 1162609 | Zbl 0776.13007
[11] McCasland, R. L., Moore, M. E., Smith, P. F.: On the spectrum of a module over commutative ring. Commun. Algebra 25 (1997), 79-103. DOI 10.1080/00927879708825840 | MR 1429749 | Zbl 0876.13002
[12] Mohamadian, R.: $r$-ideals in commutative rings. Turk. J. Math. 39 (2015), 733-749. DOI 10.3906/mat-1503-35 | MR 3395802 | Zbl 1348.13003
[13] Moore, M. E., Smith, S. J.: Prime and radical submodules of modules over commutative rings. Commun. Algebra 30 (2002), 5037-5064. DOI 10.1081/agb-120014684 | MR 1976290 | Zbl 1049.13001
[14] Tekir, U., Koc, S., Oral, K. H.: $n$-ideals of commutative rings. Filomat 31 (2017), 2933-2941. DOI 10.2298/FIL1710933T | MR 3639382 | Zbl 07418085
Partner of
EuDML logo