Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
real quadratic field; class group; class number; Dedekind zeta values
Summary:
Let $d$ be a square-free positive integer and $h(d)$ be the class number of the real quadratic field $\mathbb {Q}{(\sqrt {d})}.$ We give an explicit lower bound for $h(n^2+r)$, where $r=1,4$. Ankeny and Chowla proved that if $g>1$ is a natural number and $d=n^{2g}+1$ is a square-free integer, then $g \mid h(d)$ whenever $n>4$. Applying our lower bounds, we show that there does not exist any natural number $n>1$ such that $h(n^{2g}+1)=g$. We also obtain a similar result for the family $\mathbb {Q}(\sqrt {n^{2g}+4})$. As another application, we deduce some criteria for a class group of prime power order to be cyclic.
References:
[1] Ankeny, N. C., Chowla, S.: On the divisibility of the class numbers of quadratic fields. Pac. J. Math. 5 (1955), 321-324. DOI 10.2140/pjm.1955.5.321 | MR 0085301 | Zbl 0065.02402
[2] Apostol, T. M.: Generalized Dedekind sums and transformation formulae of certain Lambert series. Duke Math. J. 17 (1950), 147-157. DOI 10.1215/S0012-7094-50-01716-9 | MR 0034781 | Zbl 0039.03801
[3] Biró, A.: Chowla's conjecture. Acta Arith. 107 (2003), 179-194. DOI 10.4064/aa107-2-5 | MR 1970822 | Zbl 1154.11339
[4] Biró, A.: Yokoi's conjecture. Acta Arith. 106 (2003), 85-104. DOI 10.4064/aa106-1-6 | MR 1956977 | Zbl 1154.11338
[5] Biró, A., Lapkova, K.: The class number one problem for the real quadratic fields $\mathbb{Q}(\sqrt{(an)^2+4a})$. Acta Arith. 172 (2016), 117-131. DOI 10.4064/aa118-2-2 | MR 3455622 | Zbl 1358.11119
[6] Byeon, D., Kim, H. K.: Class number 1 criteria for real quadratic fields of Richaud-Degert type. J. Number Theory 57 (1996), 328-339. DOI 10.1006/jnth.1996.0052 | MR 1382755 | Zbl 0846.11060
[7] Byeon, D., Kim, H. K.: Class number 2 criteria for real quadratic fields of Richaud-Degert type. J. Number Theory 62 (1997), 257-272. DOI 10.1006/jnth.1997.2059 | MR 1432773 | Zbl 0871.11076
[8] Chakraborty, K., Hoque, A., Mishra, M.: A note on certain real quadratic fields with class number up to three. Kyushu J. Math. 74 (2020), 201-210. DOI 10.2206/kyushujm.74.201 | MR 4129806 | Zbl 1452.11132
[9] Chakraborty, K., Hoque, A., Mishra, M.: On the structure of order 4 class groups of $\mathbb{Q} (\sqrt{n^2+1})$. Ann. Math. Qué. 45 (2021), 203-212. DOI 10.1007/s40316-020-00139-1 | MR 4229182 | Zbl 1469.11432
[10] Chowla, S., Friedlander, J.: Class numbers and quadratic residues. Glasg. Math. J. 17 (1976), 47-52. DOI 10.1017/S0017089500002718 | MR 0417117 | Zbl 0323.12006
[11] Hasse, H.: Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkörper. Elem. Math. 20 (1965), 49-59 German. DOI 10.5169/seals-23925 | MR 0191889 | Zbl 0128.03502
[12] Kim, H. K., Leu, M.-G., Ono, T.: On two conjectures on real quadratic fields. Proc. Japan Acad., Ser. A 63 (1987), 222-224. DOI 10.3792/pjaa.63.222 | MR 0907000 | Zbl 0624.12002
[13] Lang, H.: Über eine Gattung elemetar-arithmetischer Klasseninvarianten reell-quadratischer Zahlkörper. J. Reine Angew. Math. 233 (1968), 123-175 German. DOI 10.1515/crll.1968.233.123 | MR 0238804 | Zbl 0165.36504
[14] Lang, S.: Algebraic Number Theory. Graduate Texts in Mathematics 110. Springer, New York (1994). DOI 10.1007/978-1-4612-0853-2 | MR 1282723 | Zbl 0811.11001
[15] Lapkova, K.: Class number one problem for real quadratic fields of a certain type. Acta Arith. 153 (2012), 281-298. DOI 10.4064/aa153-3-4 | MR 2912719 | Zbl 1329.11118
[16] Lemmermeyer, F.: Algebraic Number Theory. Bilkent University, Bilkent (2006), Available at {\def\let \relax \brokenlink{ http://www.fen.bilkent.edu.tr/ franz/ant06/ant.pdf}}\kern0pt.
[17] Mollin, R. A.: Lower bounds for class numbers of real quadratic fields. Proc. Am. Math. Soc. 96 (1986), 545-550. DOI 10.1090/S0002-9939-1986-0826478-X | MR 0826478 | Zbl 0591.12007
[18] Mollin, R. A.: Lower bounds for class numbers of real quadratic and biquadratic fields. Proc. Am. Math. Soc. 101 (1987), 439-444. DOI 10.1090/S0002-9939-1987-0908645-0 | MR 0908645 | Zbl 0632.12006
[19] Mollin, R. A.: On the insolubility of a class of Diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaud-Degert type. Nagoya Math. J. 105 (1987), 39-47. DOI 10.1017/S0027763000000738 | MR 0881007 | Zbl 0591.12005
[20] Mollin, R. A., Williams, H. C.: A conjecture of S. Chowla via the generalized Riemann hypothesis. Proc. Am. Math. Soc. 102 (1988), 794-796. DOI 10.1090/S0002-9939-1988-0934844-9 | MR 0934844 | Zbl 0649.12005
[21] Siegel, C. L.: Berechnung von Zetafunktionen an ganzzahligen Stellen. Nachr. Akad. Wiss. Gött., II. Math.-Phys. Kl. 10 (1969), 87-102 German. MR 0252349 | Zbl 0186.08804
[22] Weinberger, P. J.: Real quadratic fields with class numbers divisible by $n$. J. Number Theory 5 (1973), 237-241. DOI 10.1016/0022-314X(73)90049-8 | MR 0335471 | Zbl 0287.12007
[23] Yokoi, H.: On real quadratic fields containing units with norm -1. Nagoya Math. J. 33 (1968), 139-152. DOI 10.1017/S0027763000012939 | MR 0233803 | Zbl 0167.04401
[24] Yokoi, H.: On the fundamental unit of real quadratic fields with norm 1. J. Number Theory 2 (1970), 106-115. DOI 10.1016/0022-314X(70)90010-7 | MR 0252351 | Zbl 0201.05703
[25] Yokoi, H.: Class-number one problem for certain kind of real quadratic fields. Class Numbers and Fundamental Units of Algebraic Number Fields Nagoya University, Nagoya (1986), 125-137. MR 0891892 | Zbl 0612.12010
Partner of
EuDML logo