Previous |  Up |  Next

Article

Keywords:
Butterfly-point; non-normality point; Čech--Stone compactification; Tychonoff product; weak Lindelöf number
Summary:
Let $X$ be the Tychonoff product $\prod _{\alpha <\tau}X_{\alpha}$ of $\tau$-many Tychonoff non-single point spaces $X_{\alpha}$. Let $p\in X^{*}$ be a point in the closure of some $G\subset X$ whose weak Lindelöf number is strictly less than the cofinality of $\tau$. Then we show that $\beta X\setminus \{p\}$ is not normal. Under some additional assumptions, $p$ is a butterfly-point in $\beta X$. In particular, this is true if either $X=\omega^{\tau}$ or $X=R^{\tau}$ and $\tau$ is infinite and not countably cofinal.
References:
[1] Bešlagić A., van Douwen E. K.: Spaces of nonuniform ultrafilters in space of uniform ultrafilters. Topology Appl. 35 (1990), no. 2–3, 253–260. DOI 10.1016/0166-8641(90)90110-N | MR 1058805
[2] Błaszczyk A., Szymański A.: Some non-normal subspaces of the Čech–Stone compactification of a discrete space. Proc. Eighth Winter School on Abstract Analysis and Topology, Praha, 1980, Czechoslovak Academy of Sciences, Praha, 1980, pages 35–38.
[3] Fine N. J., Gillman L.: Extension of continuous functions in $\beta N$. Bull. Amer. Math. Soc. 66 (1960), 376–381. DOI 10.1090/S0002-9904-1960-10460-0 | MR 0123291
[4] Logunov S.: On non-normality points and metrizable crowded spaces. Comment. Math. Univ. Carolin. 48 (2007), no. 3, 523–527. MR 2374131
[5] Logunov S.: Non-normality points and big products of metrizable spaces. Topology Proc. 46 (2015), 73–85. MR 3218260
[6] Logunov S.: On non-normality points, Tychonoff products and Suslin number. Comment. Math. Univ. Carolin. 63 (2022), no. 1, 131–134. MR 4445740
[7] Shapirovskij B.: On embedding extremely disconnected spaces in compact Hausdorff spaces, $b$-points and weight of pointwise normal spaces. Dokl. Akad. Nauk SSSR 223 (1987), 1083–1086. MR 0394609
[8] Terasawa J.: $\beta X-\{p\}$ are non-normal for non-discrete spaces $X$. Topology Proc. 31 (2007), no. 1, 309–317.
[9] Warren N. M.: Properties of Stone–Čech compactifications of discrete spaces. Proc. Amer. Math. Soc. 33 (1972), 599–606.
Partner of
EuDML logo