[1] Engelking R.:
General Topology. Mathematical Monographs, 60, PWN—Polish Scientific Publishers, Warszawa, 1977.
MR 0500780 |
Zbl 0684.54001
[2] Galvin F.:
Problem 6444. Amer. Math. Monthly 90 (1983), no. 9, 648; solution: Amer. Math. Monthly 92 (1985), no. 6, 434.
MR 1540672
[4] Juhász I., van Mill J.:
Countably compact spaces all countable subsets of which are scattered. Comment. Math. Univ. Carolin. 22 (1981), no. 4, 851–855.
MR 0647031
[5] Levy R., Matveev M.:
Functional separability. Comment. Math. Univ. Carolin. 51 (2010), no. 4, 705–711.
MR 2858271 |
Zbl 1224.54063
[7] Pelczyński A., Semadeni Z.:
Spaces of continuous functions. III. Spaces $C(\Omega)$ for $\Omega$ without perfect subsets. Studia Math. 18 (1959), 211–222.
DOI 10.4064/sm-18-2-211-222 |
MR 0107806
[9] Tkachuk V. V.:
A $C_p$-Theory Problem Book. Topological and Function Spaces. Problem Books in Mathematics, Springer, New York, 2011.
MR 3024898
[10] Tkachuk V. V.:
A $C_p$-Theory Problem Book. Special Features of Function Spaces. Problem Books in Mathematics, Springer, Cham, 2014.
MR 3243753
[11] Tkachuk V. V.:
A $C_p$-Theory Problem Book. Compactness in Function Spaces. Problem Books in Mathematics, Springer, Cham, 2015.
MR 3364185
[12] Tkachuk V. V.:
A nice subclass of functionally countable spaces. Comment. Math. Univ. Carolin. 59 (2018), no. 3, 399–409.
MR 3861562
[13] Tkachuk V. V.:
Exponential domination in function spaces. Comment. Math. Univ. Carolin. 61 (2020), no. 3, 397–408.
MR 4186115
[16] Tkachuk V. V.:
The extent of a weakly exponentially separable space can be arbitrarily large. Houston J. Math. 46 (2020), no. 3, 809–819.
MR 4229084
[17] Vaughan J. E.:
Countably compact and sequentially compact spaces. Handbook of Set-Theoretic Topology, North Holland, Amsterdam, 1984, pages 569–602.
MR 0776631 |
Zbl 0562.54031