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On butterfly-points in βX,

Tychonoff products and weak Lindelöf numbers

Sergei Logunov

Abstract. Let X be the Tychonoff product
∏

α<τ
Xα of τ -many Tychonoff non-

single point spaces Xα. Let p ∈ X∗ be a point in the closure of some G ⊂ X

whose weak Lindelöf number is strictly less than the cofinality of τ . Then we
show that βX \ {p} is not normal. Under some additional assumptions, p is
a butterfly-point in βX. In particular, this is true if either X = ωτ or X = Rτ

and τ is infinite and not countably cofinal.

Keywords: Butterfly-point; non-normality point; Čech–Stone compactification;
Tychonoff product; weak Lindelöf number

Classification: 54D15, 54D35, 54D40, 54D80, 54E35, 54G20

1. Introduction

Let X∗ = βX \X be the remainder of the Čech–Stone compactification βX of

the Tychonoff space X. One of the most classical and intriguing question in the

theory of the countable discrete space ω = {0, 1, 2, . . .} is the following, see [3]:

Is ω∗ \ {p} not normal for any point p of ω∗?

Despite great efforts so far it was only partially solved, see for example [2],

[1] and [9]. But it could be answered for crowded spaces, see for example [4], [5]

and [8]. It is closely related to the following concept of B. Shapirovskij: a point p

of X is called a b-point or a butterfly-point in X , if there are subsets F and G

of X \ {p} such that {p} = [F ] ∩ [G], see [7]. We say that a point p of X∗ is

a b-point in βX if there are subsets F and G of X∗ \ {p} with the following

properties: {p} = [F ] ∩ [G] and [F ∪G] ⊂ X∗. It clearly implies that βX \ {p} is

not normal. In [6] the following results were obtained:

Theorem. Let a space X =
∏

α<τ Xα be the Tychonoff product of τ -many non-

single point Tychonoff spaces Xα. Let a point p ∈ X∗ be in the closure of some

subset G ⊂ X with C(G) < cf(τ). Then βX \ {p} is not normal.
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We denote by cf(τ) the cofinality of τ , d(X) the density and C(X) the Suslin

number of the space X . By the weak Lindelöf number, denoting it by wL(X),

we mean the minimal cardinal τ with the following property: every open cover P

of X contains subfamily P ′ of cardinality at most τ with
[⋃

P ′
]
= X . Clearly,

wL(X) ≤ C(X). By Ψ∗(p,X) we denote the minimal cardinal τ with the follow-

ing property: there is a family of τ open in βX sets {Vα : α < τ} such that

p ∈
⋂

α<τ

Vα ⊂ X∗.

We put Ψ∗(X) = sup{Ψ∗(p,X) : p ∈ X∗}. Now we obtain

Theorem 1. Let the space X be the Tychonoff product
∏

α<τ Xα of τ -many

non-single point Tychonoff spaces Xα. Let a point p ∈ X∗ be in the closure of

some G ⊂ X with wL(G) < cf(τ). Then βX \ {p} is not normal.

Theorem 2. Let the space X be the Tychonoff product
∏

α<τ Xα of τ -many

non-single point Tychonoff spaces Xα. Let a point p ∈ X∗ be in the closure of

some G ⊂ X with wL(G) < cf(τ) and Ψ∗(p,X) < cf(τ). Then p is a butterfly-

point in βX . Hence βX \ {p} is not normal.

Corollary 1. Every point p ∈ (ωτ )∗ is a butterfly-point in β(ωτ ), if τ has un-

countable cofinality.

Corollary 2. Every point p ∈ (Rτ )∗ is a butterfly-point in β(Rτ ), if τ has

uncountable cofinality.

Corollary 3. Every point p ∈ (Xτ )∗ is a butterfly-point in β(Xτ ), if d(X) +

Ψ∗(X) < cf(τ).

By [6], p is a non-normality point of βXτ under the assumptions of Corollar-

ies 1–3.

2. Proofs

First, we prove Theorem 2 using its conditions and notation. Then we can easily

prove Theorem 1 by omitting some unnecessary facts. By the Hewitt–Marczevski–

Pondiczery theorem and its corollary on the Suslin number of products we obtain

C(X) < cf(τ) in Corollaries 1–3. Therefore Theorem 2 implies these corollaries

by Lemma 2.

In our paper all spaces are Tychonoff spaces, R is a straight line, {Eγ : γ < κ}

is a family of cardinality κ and [ ] is the closure operator in βX . Moreover, xα0
is

the α0th coordinate of the point x = (xα)α<τ of X and Uα0
is the α0th factor of

the product U =
∏

α<τ Uα. All the ordinals are strictly less then the number of

factors τ .
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Considering pairwise products, if necessary, we can assume that each Xα con-

tains at least three pairwise different points, let us call them aα, bα and cα. Then

the points a = (aα)α<τ , b = (bα)α<τ and c = (cα)α<τ of the space X are of

great importance in our construction. We will present it only for a, assuming it

is completely similar for b and c.

We fix an arbitrary base Bα in every Xα and assume that the base B of X

consists of all products of the form U =
∏

α<τ Uα, where Uα 6= Xα for at most

finitely many α < τ for which Uα ∈ Bα. For every U ∈ B we put

λ(U) = max{α < τ : Uα 6= Xα}.

If α < τ , then

U(α, a) =
∏

γ≤α

Uγ ×
∏

γ>α

{aγ}.

We denote by O all open neighbourhoods of the point p in βX . For each

O ∈ O we fix both a unique O′ ∈ O with [O′] ⊂ O and a unique subfamily

F = F (O) of B with the following properties:

| F |≤ wL(G),
⋃

F ⊂ O and O′ ∩G ⊂
[⋃

F ∩G
]
,

see Lemma 1. We put

λ(O) = λ(F ) = sup{λ(U) : U ∈ F}.

If α < τ , then

F (α, a) = {U(α, a) : U ∈ F}.

Since | F |< cf(τ), then λ(O) < τ . We set F = {F (O) : O ∈ O} and

F(α, a) = {F (α, a) : F ∈ F}.

We fix {Vγ : γ < κo} ⊂ O so that κ0 < cf(τ) and p ∈
⋂

γ<κ0
[Vγ ] ⊂ X∗. Then

λ0 = supγ<κ0
λ(Vγ) satisfies λ0 < τ .

Lemma 1. If wL(X) ≤ τ and O ⊂ X is open, then wL([O]) ≤ τ .

Proof: Let P be any open cover of [O] and U ′ ∩ [O] = U for any U ∈ P and

some open U ′ ⊂ X . Then the open cover R = {U ′ : U ∈ P} ∪ {X \ [O]} of X

contains subfamily R̃ of cardinality at most τ with
[⋃

R̃
]
= X and P̃ = {U ∈ P :

U ′ ∈ R̃} is as required. �

Lemma 2. We have Ψ∗(p,X) ≤ supα<τ Ψ
∗(Xα).

Proof: Let g : βX →
∏

α<τ βXα be the continuous extension of the identity

mapping X → X . For any x ∈ X there is O ∈ O with x 6∈ [O]. But q = g(p) is in

the closure of O ∩X = g(O ∩X). Hence q 6= x implies q /∈ X , i.e. qα0
∈ X∗

α0
for

some α0 < τ . For κ = Ψ∗(Xα0
) we get qα0

∈
⋂

γ<κEγ ⊂ X∗
αo

for some Eγ open
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in βXα0
. Let f : βX → βXα0

be composition of g with orthogonal projection∏
α<τ βXα → βXα0

. Then p ∈
⋂

γ<κ f
−1Eγ ⊂ X∗. �

Lemma 3. If F ∈ F and α ≥ λ(F ), then
⋃
F (α, a) ⊂

⋃
F .

Proof: If U ∈ F and U(α, a)γ 6= Uγ , then γ > α ≥ λ(U) implies Uγ = Xγ .

Hence U(α, a) ⊂ U implies Lemma 3. �

Lemma 4. For every α < τ the family
{⋃

F (α, a) : F ∈ F
}
is centered.

Proof: Let n ∈ N and Fi ∈ F for every i < n. Then Fi = F (Oi) for some

Oi ∈ O and O′
i ∩ G ⊂

[⋃
Fi ∩ G

]
by our construction. Since the nonempty

U =
⋂

i<n O
′
i ∩ G is open in G, it is in the closure of every

⋃
Fi ∩ U , which is

open in U . There is a point x = (xγ)γ<τ of U with x ∈
⋂

i<n

(⋃
Fi ∩U

)
. Define

a point x′ = (x′
γ)γ<τ of X as follows: x′

γ = xγ if γ ≤ α and x′
γ = aγ otherwise.

Then x ∈
⋂

i<n Ui for some Ui ∈ Fi implies

x′ ∈
⋂

i<n

Ui(α, a) ⊂
⋂

i<n

⋃
Fi(α, a).

�

For every α > λ0 we fix an arbitrary point ξα(a) in
⋂{[⋃

F
]
: F ∈ F(α, a)

}

and put A = {ξα(a) : α > λ0}.

Lemma 5. If O ∈ O and α ≥ λ(O), then ξα(a) ∈ [O].

Proof: By Lemma 3 we obtain ξα(a) ∈
[⋃

F (O)(α, a)
]
⊂

[⋃
F (O)

]
⊂ [O]. �

Corollary 4. p ∈ [A] ⊂
⋂

γ<κ0
[Vγ ] ⊂ X∗.

In the same way, b generates B = {ξα(b) : α > λ0} and c generates C =

{ξα(c) : α > λ0}, having the same properties as A. For every λ > λ0 we put

Aλ = {ξα(a) : α ∈ λ\λ0}, Bλ = {ξα(b) : α ∈ λ\λ0} and Cλ = {ξα(c) : α ∈ λ\λ0}.

Lemma 6. For every λ > λ0 the closures of Aλ, Bλ and Cλ are pairwise disjoint.

Proof: Let the continuous map g : Xλ → [0, 2] satisfy g(aλ) = 0, g(bλ) = 1

and g(cλ) = 2. Its composition with the orthogonal projection X → Xλ has the

continuous extension f : βX → [0, 2] (f(x) = g(xλ) for every x ∈ X). Then for

any α ∈ λ \ λ0 and F ∈ F we obtain

f(ξα(a)) ∈ f
[⋃

F (α, a)
]
⊂

[
f
(⋃

F (α, a)
)]

=

[
f

( ⋃

U∈F

U(α, a)

)]

=

[ ⋃

U∈F

f(U(α, a))

]
=

[ ⋃

U∈F

g{aλ}

]
= {O}.

Hence f(Aλ) = {0}. Similarly, f(Bλ) = {1} and f(Cλ) = {2}. �
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Corollary 5. At most one of the sets A, B and C contains p.

Lemma 7. The point p is a butterfly-point.

Proof: Let q ∈ X∗ be not in the closure of some O ∈ O. By Lemma 6 at most

one of the sets Aλ(O), Bλ(O) and Cλ(O) can contain q in its closure. By Lemma 5

the same is true for A, B and C. By Corollaries 4 and 5 our proof is complete. �

References
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