[1] Brouwer A. E.: A characterization of connected (weakly) orderable spaces. Math. Centrum, Amsterdam, Afd. zuivere Wisk. ZW 10/71 (1971), 7 pages.
[2] Brouwer A. E.: On the topological characterization of the real line. Math. Centrum, Amsterdam, Afd. zuivere Wisk. ZW 8/71 (1971), 6 pages.
[4] Čech E.:
Topological Spaces. Publishing House of the Czechoslovak Academy of Sciences, Praha, Interscience Publishers John Wiley & Sons, London, 1966.
MR 0211373
[5] Čoban M. M.:
Many-valued mappings and Borel sets. Trans. Mosc. Math. Soc. 22 (1970), 258–280.
MR 0372812
[9] Engelking R., Heath R. W., Michael E.:
Topological well-ordering and continuous selections. Invent. Math. 6 (1968), 150–158.
DOI 10.1007/BF01425452 |
MR 0244959
[10] García-Ferreira S., Gutev V., Nogura T., Sanchis M., Tomita A.:
Extreme selections for hyperspaces of topological spaces. Proc. of the International Conf. on Topology and Its Applications, Yokohama, 1999, Topology Appl. 122 (2002), no. 1–2, 157–181.
DOI 10.1016/S0166-8641(01)00141-9 |
MR 1919299
[12] Gutev V.:
Selections and hyperspaces. Recent Progress in General Topology, III, Atlantis Press, Paris, 2014, pages 535–579.
MR 3205492
[13] Gutev V.:
Selections and approaching points in products. Comment. Math. Univ. Carolin. 57 (2016), no. 1, 89–95.
MR 3478342
[18] Gutev V., Nogura T.:
Weak orderability of topological spaces. Topology Appl. 157 (2010), no. 8, 1249–1274.
MR 2610437
[20] Huntington E. V.:
A set of independent postulates for cyclic order. Proc. Natl. Acad. Sci. USA 2 (1916), 630–631.
DOI 10.1073/pnas.2.11.630
[21] Huntington E. V.:
Sets of completely independent postulates for cyclic order. Proc. Natl. Acad. Sci. USA 10 (1924), 74–78.
DOI 10.1073/pnas.10.2.74
[22] Kok H.:
Connected Orderable Spaces. Mathematical Centre Tracts, 49, Mathematisch Centrum, Amsterdam, 1973.
MR 0339099
[25] Nadler S. B., Jr.:
Continuum Theory. An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992.
MR 1192552 |
Zbl 0819.54015
[26] Nogura T., Shakhmatov D.:
Characterizations of intervals via continuous selections. Rend. Circ. Mat. Palermo (2) 46 (1997), no. 2, 317–328.
DOI 10.1007/BF02977032 |
MR 1617361