Previous |  Up |  Next

Article

Keywords:
Vietoris topology; continuous selection; weak selection; weakly orderable space; weakly cyclically orderable space
Summary:
We deal with a hyperspace selection problem in the setting of connected spaces. We present two solutions of this problem illustrating the difference between selections for the nonempty closed sets, and those for the at most two-point sets. In the first case, we obtain a characterisation of compact orderable spaces. In the latter case --- that of selections for at most two-point sets, the same selection property is equivalent to the existence of a ternary relation on the space, known as a cyclic order, and gives a characterisation of the so called weakly cyclically orderable spaces.
References:
[1] Brouwer A. E.: A characterization of connected (weakly) orderable spaces. Math. Centrum, Amsterdam, Afd. zuivere Wisk. ZW 10/71 (1971), 7 pages.
[2] Brouwer A. E.: On the topological characterization of the real line. Math. Centrum, Amsterdam, Afd. zuivere Wisk. ZW 8/71 (1971), 6 pages.
[3] Buhagiar D., Gutev V.: Selections and deleted symmetric products. Tsukuba J. Math. 41 (2017), no. 1, 1–20. DOI 10.21099/tkbjm/1506353557 | MR 3705772
[4] Čech E.: Topological Spaces. Publishing House of the Czechoslovak Academy of Sciences, Praha, Interscience Publishers John Wiley & Sons, London, 1966. MR 0211373
[5] Čoban M. M.: Many-valued mappings and Borel sets. Trans. Mosc. Math. Soc. 22 (1970), 258–280. MR 0372812
[6] van Dalen J., Wattel E.: A topological characterization of ordered spaces. General Topology and Appl. 3 (1973), 347–354. DOI 10.1016/0016-660X(73)90022-6 | MR 0341431
[7] Duda R.: On ordered topological spaces. Fund. Math. 63 (1968), 295–309. DOI 10.4064/fm-63-3-295-309 | MR 0235524
[8] Eilenberg S.: Ordered topological spaces. Amer. J. Math. 63 (1941), 39–45. DOI 10.2307/2371274 | MR 0003201
[9] Engelking R., Heath R. W., Michael E.: Topological well-ordering and continuous selections. Invent. Math. 6 (1968), 150–158. DOI 10.1007/BF01425452 | MR 0244959
[10] García-Ferreira S., Gutev V., Nogura T., Sanchis M., Tomita A.: Extreme selections for hyperspaces of topological spaces. Proc. of the International Conf. on Topology and Its Applications, Yokohama, 1999, Topology Appl. 122 (2002), no. 1–2, 157–181. DOI 10.1016/S0166-8641(01)00141-9 | MR 1919299
[11] Gutev V.: Weak orderability of second countable spaces. Fund. Math. 196 (2007), no. 3, 275–287. DOI 10.4064/fm196-3-4 | MR 2353859
[12] Gutev V.: Selections and hyperspaces. Recent Progress in General Topology, III, Atlantis Press, Paris, 2014, pages 535–579. MR 3205492
[13] Gutev V.: Selections and approaching points in products. Comment. Math. Univ. Carolin. 57 (2016), no. 1, 89–95. MR 3478342
[14] Gutev V.: Scattered spaces and selections. Topology Appl. 231 (2017), 306–315. DOI 10.1016/j.topol.2017.09.023 | MR 3712970
[15] Gutev V., Nogura T.: Selections and order-like relations. Appl. Gen. Topol. 2 (2001), no. 2, 205–218. DOI 10.4995/agt.2001.2150 | MR 1890037
[16] Gutev V., Nogura T.: Fell continuous selections and topologically well-orderable spaces. Mathematika 51 (2004), no. 1–2, 163–169. DOI 10.1112/S002557930001559X | MR 2220220
[17] Gutev V., Nogura T.: Set-maximal selections. Topology Appl. 157 (2010), no. 1, 53–61. DOI 10.1016/j.topol.2009.04.050 | MR 2556079
[18] Gutev V., Nogura T.: Weak orderability of topological spaces. Topology Appl. 157 (2010), no. 8, 1249–1274. MR 2610437
[19] Hocking J. G., Young G. S.: Topology. Addison–Wesley Publishing, London, 1961. MR 0125557 | Zbl 0718.55001
[20] Huntington E. V.: A set of independent postulates for cyclic order. Proc. Natl. Acad. Sci. USA 2 (1916), 630–631. DOI 10.1073/pnas.2.11.630
[21] Huntington E. V.: Sets of completely independent postulates for cyclic order. Proc. Natl. Acad. Sci. USA 10 (1924), 74–78. DOI 10.1073/pnas.10.2.74
[22] Kok H.: Connected Orderable Spaces. Mathematical Centre Tracts, 49, Mathematisch Centrum, Amsterdam, 1973. MR 0339099
[23] Michael E.: Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 (1951), 152–182. DOI 10.1090/S0002-9947-1951-0042109-4 | MR 0042109 | Zbl 0043.37902
[24] van Mill J., Wattel E.: Selections and orderability. Proc. Amer. Math. Soc. 83 (1981), no. 3, 601–605. DOI 10.1090/S0002-9939-1981-0627702-4 | MR 0627702
[25] Nadler S. B., Jr.: Continuum Theory. An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. MR 1192552 | Zbl 0819.54015
[26] Nogura T., Shakhmatov D.: Characterizations of intervals via continuous selections. Rend. Circ. Mat. Palermo (2) 46 (1997), no. 2, 317–328. DOI 10.1007/BF02977032 | MR 1617361
[27] Whyburn G. T.: Concerning the cut points of continua. Trans. Amer. Math. Soc. 30 (1928), no. 3, 597–609. DOI 10.1090/S0002-9947-1928-1501448-5 | MR 1501448
[28] Willard S.: General Topology. Addison–Wesley Publishing, London, 1970. MR 0264581 | Zbl 1052.54001
Partner of
EuDML logo