[1] Alberto-Domínguez J. C., Acosta G., Delgadillo-Piñón G.:
Totally Brown subsets of the Golomb space and the Kirch space. Comment. Math. Univ. Carolin. 63 (2022), no. 2, 189–219.
MR 4506132
[2] Apostol T. M.:
Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics, Springer, New York, 1976.
MR 0434929
[4] Dontchev J.:
On superconnected spaces. Serdica 20 (1994), no. 3–4, 345–350.
MR 1333356
[5] Dunham W.:
$T_{1/2}$-spaces. Kyungpook Math. J. 17 (1977), no. 2, 161–169.
MR 0470934
[6] Engelking R.:
General Topology. Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989.
MR 1039321 |
Zbl 0684.54001
[7] Fine B., Rosenberger G.:
Number Theory. An Introduction via the Density of Primes. Birkhäuser/Springer, Cham, 2016.
MR 3559913
[9] Golomb S. W.:
Arithmetica topologica. General Topology and Its Relations to Modern Analysis and Algebra, Proc. Sympos., Praha, 1961, Academic Press, New York, Publ. House Czech. Acad. Sci., Praha, 1962, pages 179–186 (Italian).
MR 0154249
[10] Jha M. N.:
Separation axioms between $T_0$ and $T_1$. Progr. Math. (Allahabad) 11 (1977), no. 1–2, 1–4.
MR 0458365
[13] Nanda S., Panda H. K.:
The fundamental group of principal superconnected spaces. Rend. Mat. (6) 9 (1976), no. 4, 657–664.
MR 0434295
[14] Steen L. A., Seebach J. A., Jr.:
Counterexamples in Topology. Dover Publications, Mineola, New York, 1995.
MR 1382863 |
Zbl 0386.54001
[15] Szczuka P.:
Connections between connected topological spaces on the set of positive integers. Cent. Eur. J. Math. 11 (2013), no. 5, 876–881.
MR 3032336
[16] Szczuka P.:
The closures of arithmetic progressions in the common division topology on the set of positive integers. Cent. Eur. J. Math. 12 (2014), no. 7, 1008–1014.
MR 3188461
[18] Szyszkowska P., Szyszkowski M.:
Properties of the common division topology on the set of positive integers. J. Ramanujan Math. Soc. 33 (2018), no. 1, 91–98.
MR 3772612