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Hyperspace selections avoiding points

Valentin Gutev

Abstract. We deal with a hyperspace selection problem in the setting of con-
nected spaces. We present two solutions of this problem illustrating the differ-
ence between selections for the nonempty closed sets, and those for the at most
two-point sets. In the first case, we obtain a characterisation of compact order-
able spaces. In the latter case — that of selections for at most two-point sets,
the same selection property is equivalent to the existence of a ternary relation on
the space, known as a cyclic order, and gives a characterisation of the so called
weakly cyclically orderable spaces.

Keywords: Vietoris topology; continuous selection; weak selection; weakly order-
able space; weakly cyclically orderable space

Classification: 54B20, 54C65, 54D05, 54D30, 54F05, 54F65

1. Introduction

All spaces in this paper are infinite Hausdorff topological spaces. For a spaceX ,

let F (X) be the set of all nonempty closed subsets of X . Usually, we endow

F (X) with the Vietoris topology τV , and call it the Vietoris hyperspace of X .

Recall that τV is generated by all collections of the form

〈V 〉 =
{

S ∈ F (X) : S ⊂
⋃

V and S ∩ V 6= ∅, whenever V ∈ V

}

,

where V runs over the finite families of open subsets of X . In the sequel, any

subset D ⊂ F (X) will carry the relative Vietoris topology as a subspace of the

hyperspace (F (X), τV ). A map f : D → X is a selection for D if f(S) ∈ S for

every S ∈ D . A selection f : D → X is continuous if it is continuous with respect

to the relative Vietoris topology on D , and we use Vcs[D ] to denote the set of all

Vietoris continuous selections for D .

A space X is orderable (or linearly ordered) if it is endowed with the open

interval topology T≤ generated by some linear order “≤” on X , called compatible

for X . Subspaces of orderable spaces are not necessarily orderable, they are

termed suborderable. A space X is weakly orderable if there exists a coarser
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orderable topology on X , i.e. if there exists a linear order “≤” on X (called

compatible for X) such that T≤ ⊂ T , where T is the topology of X . The

weakly orderable spaces were introduced by S. Eilenberg in [8] under the name of

“ordered” topological spaces, and are often called “Eilenberg orderable”. They

were called “weakly orderable” in [1], [2], [6], [24], and in [24] was also proposed

to abbreviate them as KOTS.

It was shown in [14, Proposition 5.1] that if X is a connected space and F (Z)

has a continuous selection for every connected subset Z ⊂ X with |X \ Z| ≤ 1,

then X is compact and orderable. However, this selection property includes the

special case of Z = X , i.e. that F (X) itself has a continuous selection. Here, we

are going to show that this result is valid without explicitly requiring that F (X)

has a continuous selection, see Theorem 3.3. Based on this, we will obtain the

following characterization of connected compact orderable spaces.

Theorem 1.1. A connected space X is compact and orderable if and only if

Vcs[F (X \ {p})] 6= ∅ for each p ∈ X .

Regarding the proper place of Theorem 1.1, let us explicitly remark that if X

is a space such that F (Z) has a continuous selection for every Z ⊂ X with

|X \ Z| ≤ 2, then X is totally disconnected, see [14, Corollary 5.3]. On the

other hand, the hypothesis in Theorem 1.1 that X is connected is essential to

conclude that it is compact. In fact, we will obtain a natural generalization of the

aforementioned result of [14] showing that the hyperspace selection property in

Theorem 1.1 is possessed by a natural class of non-compact totally disconnected

spaces, see Theorem 4.3 and Corollary 4.4.

Let F2(X) = {S ∈ F (X) : |S| ≤ 2}. A selection f : F2(X)→ X is commonly

called a weak selection for X , see the next section for a brief review of such

selections. Theorem 1.1 is not valid in the setting of continuous weak selections.

In this case, the property is characterizing another class of connected spaces which

constitutes the second main result of this paper. In order to state it, we briefly

recall some terminology. A ternary relation C ⊂ X3 on a set X is called a cyclic

(or circular) order on X , see E.V. Huntington in [20], [21] and E. Čech in [4], if

the following conditions are satisfied:

a 6= b 6= c 6= a

(a, b, c) /∈ C

}

⇐⇒ (c, b, a) ∈ C,

(a, b, c) ∈ C =⇒ (b, c, a) ∈ C,

(a, b, c) ∈ C

(a, c, d) ∈ C

}

=⇒ (a, b, d) ∈ C.
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Several basic properties of a cyclic order can be found in §5 of Chapter I in [4].

For instance, whenever a ∈ X , a cyclic order C on X defines a (strict) linear

order “<C,a” on X \ {a} by x <C,a y if (a, x, y) ∈ C. The converse is also true,

and each linear order “<” on X \ {a} defines a unique cyclic order C on X with

“<=<C,a”. Furthermore, each linear order “<” on X can be extended to a cyclic

order C< on X , see [22, Proposition 1.6], where C< is defined by

(a, b, c) ∈ C< ⇐⇒

{

a 6= b 6= c 6= a and

a < b < c or b < c < a or c < a < b.

For a cyclic order C on X and a, b ∈ X , the set

(a, b)<C
= {x ∈ X : (a, x, b) ∈ C} ⊂ X \ {a, b}

is called an interval from a to b. Evidently, (a, b)<C
= (a, a)<C

= ∅ provided

a = b. Otherwise, if a 6= b, it was shown in [4] that the linear orders “<C,a”

and “<C,b” coincide on (a, b)<C
. A space X is called weakly cyclically order-

able, see [22], (cyclically orderable, in Kok’s terminology, see [22]) if there exists

a cyclic order C on X such that all intervals (a, b)<C
, a, b ∈ X , are open in X .

If, moreover, these intervals form a base for the topology of X , then X is called

cyclically orderable, see [22], (strictly cyclically orderable, in Kok’s terminology,

see [22]). Each weakly orderable space is weakly cyclically orderable, see [22,

Proposition 1.6]. However, an orderable space is not necessarily cyclically order-

able. As pointed out in [22], such a space is the half-open interval [0, 1). In the

other direction, the plane circle is an example of a connected cyclically orderable

space which is not weakly orderable.

If X is weakly cyclically orderable and p ∈ X , then X \ {p} is weakly order-

able; in fact, weakly orderable with respect to the linear order “<C,p”, see [22,

Proposition 1.7]. In particular, X \ {p} has a continuous weak selection. Evi-

dently, this is a special case of the selection property in Theorem 1.1. We are now

ready to state our second main result. Namely, in this paper, we will also prove

the following theorem which is complementary to Theorem 1.1.

Theorem 1.2. A connected space X is weakly cyclically orderable if and only if

X \ {p} has a continuous weak selection for every p ∈ X .

The paper is organized as follows. The next section contains a brief review of

some results about continuous hyperspace selections in the setting of connected

spaces. Section 3 contains a special case of Theorem 1.1, see Theorem 3.3, which

is based on another weaker interpretation of weak orderability. The proof of

Theorem 1.1 is finalized in Section 4, while that of Theorem 1.2 — in Section 5.
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2. Connected weakly orderable spaces

As mentioned in Introduction, the weakly orderable spaces were introduced by

S. Eilenberg in [8]. In the same paper, he obtained the following interesting result

in the setting of connected spaces.

Theorem 2.1 ([8]). Each connected weakly orderable space has precisely two

compatible orders which are inverse to each other.

E. Michael was the first to relate linear orders to weak selections. For a set X

and a weak selection σ : F2(X) → X , he defined a natural order-like relation

“≤σ” on X by x ≤σ y if σ({x, y}) = x, see [23, Definition 7.1]. The relation

“≤σ” is very similar to a linear order on X being both total and antisymmetric,

but may fail to be transitive. For convenience, we write x <σ y provided x ≤σ y

and x 6= y. For a space X , the strict relation x <σ y plays an important role

in describing continuity of σ. Namely, σ is continuous if and only if for every

x, y ∈ X with x <σ y, there are open sets U, V ⊂ X such that x ∈ U , y ∈ V

and s <σ t for every s ∈ U and t ∈ V [15, Theorem 3.1]. Continuity of a weak

selection σ implies that all ≤σ-open intervals (←, x)≤σ
= {y ∈ X : y <σ x} and

(x,→)≤σ
= {y ∈ X : x <σ y}, x ∈ X , are open in X , see [23], but the converse

is not necessarily true [15, Example 3.6], see also [18, Corollary 4.2 and Exam-

ple 4.3]. For an extended review of (weak) hyperspace selections, the interested

reader is referred to [12]. Finally, let us explicitly remark that if f ∈ Vcs[D ] for

some D ⊂ F (X) with F2(X) ⊂ D , then f ↾F2(X) is a continuous weak selec-

tion for X . In this case, the order-like relation generated by f ↾F2(X) will be

simply denoted by “≤f”.

In the setting of connected spaces, using Theorem 2.1, E. Michael gave a com-

plete description of continuity of hyperspace selections. In the one direction, he

showed the following properties of these selections, see [23, Lemmas 7.2 and 7.3].

Theorem 2.2 ([8], [23]). Let X be a connected space, F2(X) ⊂ D ⊂ F (X) and

f ∈ Vcs[D ]. Then

(1) “≤f” is a linear order and X is weakly orderable with respect to “≤f”.

(2) f(S) = min≤f
S for every S ∈ D .

Moreover, if g ∈ Vcs[D ] with g 6= f , then g(S) = max≤f
S for every S ∈ D .

Next, he established the following counterpart of Theorem 2.2 in [23, Lem-

ma 7.5.1], for convenience we state it for the special case of D = F (X).

Theorem 2.3 ([23]). Let X be a connected space which is weakly orderable with

respect to a linear order “≤” such that min≤ S does exist for each S ∈ F (X).

Then F (X) has a continuous selection. In fact, f(S) = min≤ S, S ∈ F (X) is

a continuous selection for F (X).
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Let X be a connected space and f ∈ Vcs[F (X)]. Then by Theorem 2.2,

X is weakly orderable with respect to “≤f” and p = f(X) is the ≤f -minimal

element of X . However, (p,→)≤f
is a connected subset of X being an interval

[22, Theorem 1.3]. Accordingly, p has the property that X \ {p} is connected.

Such a point p ∈ X in a connected space X is called noncut. Otherwise, if X\{p}

is not connected, the point p is called cut. Let nct(X) be the set of all noncut

points of X , and ct(X) — that of all cut points of X . It is well known that each

connected weakly orderable space has at most two noncut points. The following

further property is an immediate consequence of the above considerations, see [10,

Theorem 1.1].

Corollary 2.4. Let X be a connected space, f ∈ Vcs[F (X)] and p = f(X).

Then p ∈ nct(X) and f(S) = p for every S ∈ F (X) with p ∈ S. Moreover, if

q ∈ X with q 6= p, then q ∈ nct(X) if and only if f(S) 6= q for every S ∈ F (X)

with S 6= {q}.

Proof: As remarked above, p ∈ nct(X). Moreover, since p is the ≤f -minimal

element of X , it follows from Theorem 2.2 that f(S) = p for every S ∈ F (X)

with p ∈ S. Suppose that q ∈ X with q 6= p. Then X \ {q} is connected precisely

when q is the ≤f -maximal element of X , see [11, Corollary 2.7], and also [22,

Theorem 1.3]. Therefore, by Theorem 2.2, q ∈ nct(X) precisely when f(S) 6= q

for every S ∈ F (X) with S 6= {q}. �

There are connected weakly orderable spaces X such that |nct(X)| = 2, but

F (X) has precisely one continuous selection for F (X). For instance, such

a space is the topologist’s sine curve X = {(0, 0)} ∪ {(t, sin 1/t) : 0 < t ≤ 1},

see [26, Example 8 and Lemma 15]. In this regards, the following natural result

was obtained by T. Nogura and D. Shakhmatov in [26].

Theorem 2.5 ([26]). A connected space X is compact and orderable if and only

if it has exactly two continuous selections for F (X).

3. Selections avoiding noncut points

In this section, X is used to denote a connected space. If p ∈ X is a cut point

of X , then there are disjoint sets U, V ⊂ X such that X \ {p} = U ∪ V and

{p} = U ∩ V . Following [3], such a pair (U, V ) of sets will be called a p-cut of X .

A point p ∈ X is said to separate x, y ∈ X if x ∈ U and y ∈ V for some p-cut

(U, V ) of X . If p separates x and y, then p is a cut point of X , and neither x

nor y separates the other two points, see [22, Lemma 2.1]. In these terms, X is
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called almost weakly orderable, see [3, Definition 3.2], if it has finitely many non-

cut points and among every three points of X with two of them being cut, there

is one which separates the other two.

A subset E ⊂ X is called an endset of X if X \ E is connected. Evidently,

p ∈ nct(X) precisely when the singleton {p} is an endset of X . Thus, noncut

points are often called endpoints. However, a set of endpoints is not necessarily

an endset. In contrast, the endpoints of an almost weakly orderable space form

an endset, see [3, Corollary 3.4]. Based on this, we have the following alternative

interpretation of a special class of almost weakly orderable spaces.

Proposition 3.1. Let X be a connected space such that nct(X) is a nonempty

finite set. Then X is almost weakly orderable if and only if nct(X) is an endset

of X such that {p} ∪ ct(X) is weakly orderable for every p ∈ nct(X).

Proof: Follows from the definition and the fact that a connected space Z is

weakly orderable if and only if among every three points of Z there is one which

separates the other two, see [22, Theorem 4.1] (in a footnote of [7], the result was

credited to D. Zaremba-Szczepkowicz). �

If X is almost weakly orderable, then there exists a partial order “≤” on X

such that two points of X are≤-comparable precisely when they can be separated,

moreover this order is compatible with the topology of X in the sense that all

≤-open intervals are open in X , see [3, Corollary 3.7]. Such a partial order on X

is called a separation partial order, and any two separation partial orderings on X

are either identical or inverse to each other, see [3, Proposition 3.8]. Let us

explicitly remark that the idea of a separation order induced by cut points goes

back to G.T. Whyburn in [27]; the interested reader is also referred to [19], [28],

and the more recent monograph [25].

Let X be almost weakly orderable. It follows from Proposition 3.1, see also [3,

Proposition 3.9], that for p ∈ nct(X) and a separation partial order “≤” on X ,

we have either p < x for every x ∈ ct(X), or x < p for every x ∈ ct(X); in other

words, p < ct(X) or ct(X) < p. In particular, noncut points p, q ∈ X are not

≤-comparable precisely when {p, q} < ct(X) or ct(X) < {p, q}. Accordingly, we

have the following immediate consequence.

Corollary 3.2. If an almost weakly orderable space has more than two noncut

points, then it has two noncut points which cannot be separated.

Using these observations, we will prove the following theorem. In the proof of

this theorem, for a set Z, a linear order “≤” on Z and a, b ∈ Z with a < b, we let

(3.1) (a, b)≤ = {z ∈ Z : a < z < b}.
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Theorem 3.3. Let X be a connected space which has at least one noncut point.

If F (X \ {p}) has a continuous selection for each p ∈ nct(X), then X is compact

and orderable.

Proof: Take a point p ∈ nct(X) and a continuous selection f for F (X \ {p}).

Since X \ {p} is connected, by Theorem 2.2 and Corollary 2.4, X \ {p} is weakly

orderable with respect to “≤f” and has a point q ∈ X \ {p} with q ≤f x for

every x ∈ X \ {p}, i.e. a noncut of X \ {p}. Then q is also a noncut point of X

and, accordingly, X has at least two noncut points. We will show that these

are the only noncut points of X . Contrary to this, assume that X has a noncut

point r ∈ X \ {p, q}. Then q <f r and there exists a point y ∈ X \ {p} with

q <f y <f r. Moreover, both sets (q, y)≤f
and (y, r)≤f

are connected being

intervals in the connected weakly orderable space X \ {p}, see [22, Theorem 1.3].

Hence, so are the sets L = (q, y)≤f
and R = (y, r)≤f

. It is also evident that

q, y ∈ nct(L) and y, r ∈ nct(R). We will show that this is impossible. To this

end, let us observe that p ∈ (←, r)≤f
because p /∈ (←, r)≤f

will imply that

(←, r)≤f
\ {r} = (←, r)≤f

is a nonempty clopen proper subset of the connected

space X \ {r}. Thus, we have that

p ∈ (←, r)≤f
= (q, y)≤f

∪ (y, r)≤f
= (q, y)≤f

∪ (y, r)≤f
= L ∪R.

In particular, p ∈ nct(L) or p ∈ nct(R). Hence, one of these sets has at least

three noncut points. However, both F (L) and F (R) have continuous selec-

tions because so do F (X \ {r}) and F (X \ {q}), while L ∈ F (X \ {r}) and

R ∈ F (X \ {q}). According to Theorem 2.2 and Corollary 2.4, this is impossi-

ble because each weakly orderable space has at most two noncut points. Thus,

p and q are the only noncut points of X and, in fact, X \{p, q} is connected. So,

nct(X) = {p, q} is an endset of X . Moreover, by Theorem 2.2, both X \ {p} and

X \ {q} are weakly orderable. Therefore, by Proposition 3.1, X is almost weakly

orderable.

We are also ready to show that X is compact and orderable. To see this,

using one of these noncut points, for instance p, take a continuous selection f for

F (X \ {p}). Then by Theorem 2.2, X \ {p} is weakly orderable with respect to

“≤f” and since ct(X) ⊂ X \ {p}, it follows from [3, Corollary 3.7] that X has

a separation partial order “≤” which extends the linear order “≤f”. This implies

that “≤” is a linear order on X , i.e. that p and q are ≤-comparable. Indeed, by

Theorem 2.2 and Corollary 2.4, q ≤ x for every x ∈ X \ {p}, i.e. q < ct(X). If

p and q are not ≤-comparable, it follows from Corollary 3.2 that {p, q} < ct(X).

In this case, take disjoint open sets U, V ⊂ X with p ∈ U and q ∈ V , and set

F = X \ (V ∪ {p}). Then U \ {p} ⊂ F ⊂ ct(X) which implies that for every

y ∈ ct(X) there exists x ∈ U \ {p} ⊂ F with x < y, because (←, y)≤ ∩ U is also



358 V. Gutev

a neighbourhood of p. However, by Theorem 2.2, f(F ) = min≤f
F ∈ F ⊂ ct(X),

which is clearly impossible. Thus, X is weakly orderable with respect to “≤”

and, in particular, q < ct(X) < p. This implies that f can be extended to

a continuous selection h for F (X). Indeed, now each S ∈ F (X) has a ≤-mi-

nimal element because p is the ≤-maximal element of X , so we may define

h(S) = f(S \ {p}) = min≤f
S = min≤ S for every S ∈ F (X) with S 6= {p}.

According to Theorem 2.3, h is a continuous selection for F (X) with h(X) = q.

Interchanging p and q, the same argument shows that F (X) also has a con-

tinuous selection which assigns to X the point p. Therefore, by Theorem 2.5,

X is compact and orderable. �

4. Selections avoiding points

Here, we finalize the proof of Theorem 1.1, which is based on the following

special type of hyperspace selections. For a space X and p ∈ X , a selection f

for F (X) is called p-minimal , see [10], if f(S) 6= p for every S ∈ F (X) with

S 6= {p}. The prototype of the following property can be found in [16, Theo-

rem 3.1].

Proposition 4.1. Let X be a space which has a p-minimal selection

f ∈ Vcs[F (X)]

for some point p ∈ X . Then f(S ∪ {p}) ∈ S, whenever S ⊂ X is a nonempty

subset with S ∪ {p} ∈ F (X). In particular, Vcs[F (X \ {p})] 6= ∅.

Proof: Let S ⊂ X be a nonempty set with S ∪ {p} ∈ F (X). Then f(S ∪

{p}) = p precisely when S ∪ {p} = {p}, i.e. S = {p}, because f is p-minimal.

This is equivalent to f(S ∪ {p}) ∈ S. For the second part of this proposition, let

us observe that S ⊂ S ∪ {p}, whenever S ∈ F (X \ {p}). Hence, we may define

a map ϕ : F (X \ {p})→ F (X) by

ϕ(S) = S ∪ {p} for every S ∈ F (X \ {p}).

Take S ∈ F (X\{p}) and a finite family V of open subsets of X with ϕ(S) ∈ 〈V 〉.

Next, take another finite family U of nonempty open subsets of X such that U

refines V and
⋃

U =
⋃

V \ {p}. Then S ∈ 〈U 〉 and ϕ(〈U 〉) ⊂ 〈V 〉, so ϕ is

continuous with respect to the Vietoris topology on these hyperspaces. We may

now define a continuous selection g for F (X \ {p}) by g = f ◦ ϕ. �

Proof of Theorem 1.1: Assume that X is a compact connected space which

is orderable. Next, take a compatible linear order “≤” on X and a point p ∈ X .
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If p is a noncut point of X , then by Corollary 2.4 and Theorem 2.5, F (X) has

a continuous p-minimal selection. Hence, by Proposition 4.1, Vcs[F (X \{p})] 6= ∅.

If p ∈ ct(X), then p is a noncut point for both intervals

Y = {x ∈ X : x ≤ p} and Z = {x ∈ X : p ≤ x}.

Moreover, these intervals are infinite, compact and orderable. Hence, for the same

reason as before, Vcs[F (Y \{p})] 6= ∅ 6= Vcs[F (Z\{p})]. Since Y \{p} and Z\{p}

form a clopen partition of X \ {p}, we also have that Vcs[F (X \ {p})] 6= ∅.

To see the converse, by Theorem 3.3, it suffices to show that X has a noncut

point provided Vcs[F (X \ {p})] 6= ∅ for each p ∈ X . To this end, take cut

points y, z ∈ ct(X). Next, let (A,B) be a y-cut of X , and (U, V ) be a z-cut

of X . Then z does not belong to one of the sets A or B, say z /∈ A. Since

S = A ∪ {y} is a connected subset of X , it is a subset of U or V , for instance

S ⊂ U . Moreover, it is closed in X . This implies that S has a noncut point p ∈ S

with p 6= y. Indeed, by Corollary 2.4, S has a noncut point because F (X \ {z})

has a continuous selection, and hence so does F (S). If this point is y, then

A = S \ {y} is connected and F (A) has a continuous selection because so does

F (X \{y}). Therefore, A has a noncut point p ∈ A. Since S is weakly orderable,

p is also a noncut point of S. Thus, p 6= y and S \ {p} is connected. However,

B ∪ {y} is also connected and y ∈ S \ {p}, so X \ {p} = (S \ {p}) ∪ B ∪ {y} is

connected as well, i.e. p ∈ nct(X). We may now apply Theorem 3.3 to complete

the proof. �

We conclude this section with some observations regarding the proper place of

Theorem 1.1. To this end, we will first establish the following partial inverse of

Proposition 4.1.

Proposition 4.2. Let X be a space and p ∈ X be a point which is a countable

intersection of clopen sets. Then the following are equivalent:

(a) Vcs[F (X)] 6= ∅;

(b) F (X) has a continuous p-minimal selection;

(c) Vcs[F (X \ {p})] 6= ∅.

Proof: The implication (a) =⇒ (b) follows from [17, Proposition 3.6], while that

of (b) =⇒ (c) is a consequence of Proposition 4.1. The implication (c) =⇒ (a) is

implicitly contained in the proof of [17, Proposition 3.6]. Briefly, take a selection

f ∈ Vcs[F (X \ {p})] and a decreasing clopen family {Vn : n < ω} with V0 = X

and {p} =
⋂

n<ω Vn. Set Sn = Vn \ Vn+1, n < ω, and for every F ∈ F (X)

with F 6= {p}, let n(F ) = min{n < ω : F ∩ Sn 6= ∅}. Finally, define a p-

minimal selection g : F (X)→ X by g(F ) = f
(

F ∩ Sn(F )

)

, whenever F ∈ F (X)

with F 6= {p}; this is correct because F ∩ Sn(F ) ∈ F (X \ {p}). Moreover, g is
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continuous at {p} because each selection is continuous on the singletons. Take

F ∈ F (X) with F 6= {p}, and a neighbourhood U of g(F ). Since f ↾F
(

Sn(F )

)

is continuous, there exists a finite family W0 of nonempty open subsets of Sn(F )

such that F ∩ Sn(F ) ∈ 〈W0〉 ⊂ f−1(U). Set W0 = Vn(F )+1 ∪
(
⋃

W0

)

and W =

{W0} ∪ W0. Then 〈W 〉 is a τV -neighbourhood of F with g(〈W 〉) ⊂ U . Indeed,

T ∈ 〈W 〉 implies T ∩ Sn(F ) 6= ∅ and T ⊂ Vn(F ), so n(T ) = n(F ). On the other

hand, T ∩ Sn(F ) ∈ 〈W0〉 and therefore g(T ) = f
(

T ∩ Sn(T )

)

∈ U . The proof is

complete. �

Based on this, we have the following theorem which is complementary to The-

orem 1.1. In this theorem, a space X is totally disconnected if each singleton

of X is an intersection of clopen subsets of X . Also, let us recall that a space X

is of countable tightness if for each A ⊂ X and x ∈ Ā, there exists a countable set

B ⊂ A with x ∈ B.

Theorem 4.3. Let X be a totally disconnected space which is of countable

tightness. Then Vcs[F (X)] 6= ∅ if and only if Vcs[F (X \ {p})] 6= ∅ for every

p ∈ X .

Proof: Take points p, q ∈ X and a clopen set Y ⊂ X with p ∈ Y and q /∈ Y .

If F (X) has a continuous selection, then so does F (Y ) because Y ∈ F (X).

Similarly, F (Y ) has a continuous selection provided so does F (X \ {q}). The

proof now consists of showing that if Vcs[F (Y )] 6= ∅, then Vcs[F (X)] 6= ∅ precisely

when Vcs[F (X \ {p})] 6= ∅. To this end, by Proposition 4.2, it suffices to show

that p is a countable intersection of clopen sets of Y . So, take a selection f ∈

Vcs[F (Y )]. Then the above property is reduced to show that p is a countable

intersection of relatively clopen sets in each one of the ≤f -intervals

(←, p]≤f
= {y ∈ Y : y ≤f p} and [p,→)≤f

= {y ∈ Y : p ≤f y}.

If p is a non-isolated point of (←, p]≤f
, using that X is of countable tightness,

there is a countable set A ⊂ (←, p)≤f
with p ∈ Ā. Therefore,

⋂

x∈A(x, p]≤f
= {p},

see [10, Theorem 4.1] and [13, Remark 3.5]. According to [18, Proposition 5.6],

this implies that p is a countable intersection of clopen subsets of (←, p]≤f
be-

cause X is totally disconnected. Similarly, p is also a countable intersection of

clopen subsets of [p,→)≤f
. The proof is complete. �

According to [14, Corollary 5.3], a space X is totally disconnected provided

F (Z) has a continuous selection for every Z ⊂ X with |X \ Z| ≤ 2. Applying

twice Theorem 4.3, this gives the following immediate consequence.

Corollary 4.4. For a space X which is of countable tightness, the following

conditions are equivalent:
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(a) X is totally disconnected and Vcs[F (X)] 6= ∅.

(b) Vcs[F (X \ S)] 6= ∅ for every S ∈ F2(X).

Evidently, by a finite induction, (b) of Corollary 4.4 can be extended to all

nonempty finite subsets S ⊂ X . Regarding this, let us remark that if X is

a regular space such that F (Z) has a continuous selection for every nonempty

open Z ⊂ X , then X has a clopen π-base [14, Theorem 5.4]. Here, a family P of

nonempty open subsets of X is a π-base for X , or a pseudobase, if each nonempty

open subset of X contains an element of P.

The hypothesis in Theorem 1.1 thatX is connected is essential to conclude that

X is compact. Namely, each completely metrizable space X which has a covering

dimension zero, i.e. being strongly zero-dimensional, has a continuous selection for

F (X), see [5], [9]. Hence, by Theorem 4.3, if X is a strongly zero-dimensional

completely metrizable space, then Vcs[F (X \ {p})] 6= ∅ for every p ∈ X . In

fact, Theorem 4.3 is not so relevant in this case. It is well known that complete

metrizability is inherited on Gδ-sets. Moreover, such sets remain strongly zero-

dimensional provided so is X . Thus, in the setting of a strongly zero-dimensional

completely metrizable space X , the hyperspace F (Z) has a continuous selection

for every nonempty Gδ-subset Z ⊂ X . Based on this, the following question was

posed in [14, Question 5], it is still open.

Question 1 ([14]). Let X be a (completely) metrizable space with the property

that F (Z) has a continuous selection for every nonempty Gδ-subset Z ⊂ X .

Then, is it true that X is strongly zero-dimensional?

Going back to the selection property that “Vcs[F (X \ {p})] 6= ∅ for every

point p ∈ X”, let us remark that it always implies the existence of a continuous

selection for the nonempty closed subsets of X . Namely, answering a question in

a previous version of this paper, the following observation was communicated to

the author by J.A.C. Chapital.

Proposition 4.5. Let X be a space such that Vcs[F (X \ {p})] 6= ∅ for every

p ∈ X . Then Vcs[F (X)] 6= ∅.

Proof: If X is connected, this follows from Theorem 1.1. Otherwise, if X is not

connected, then it has a nonempty clopen proper subset A ⊂ X . Taking points

p ∈ A and q ∈ B = X \ A, it follows that A ∈ F (X \ {q}) and B ∈ F (X \ {p}),

therefore Vcs[F (A)] 6= ∅ and Vcs[F (B)] 6= ∅. Since the sets A and B form

a clopen partition of X , we also have that Vcs[F (X)] 6= ∅. �

The condition in Proposition 4.5 that F (X\{p}) has a continuous selection for

every p ∈ X is important. Indeed, one can easily construct examples of compact

connected metrizable spaces which have a continuous selection for F (X \{p}) for
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some point p ∈ X , but Vcs[F (X)] = ∅. For instance, take any simple triod X ,

i.e. the union of 3 arcs having a common endpoint p ∈ X and being mutually

disjoint except at that point.

5. Weak selections avoiding points

In this section, we will prove Theorem 1.2, which is based on known results

and the following special case of this theorem, compare with [22, Theorem 3.11].

Lemma 5.1. Let X be a connected space such that Vcs[F2(X \ {p})] 6= ∅ for

every p ∈ X . If X has a cut point, then it is weakly orderable.

Proof: Suppose that X has a cut point q ∈ X , and take a q-cut (U, V ) of X .

Then C = U ∪ {q} is a connected set. Hence, by Theorem 2.2, it is weakly

orderable because C ⊂ X \ {p} for every (some) point p ∈ V , and X \ {p} has

a continuous weak selection. We are going to show that q is a noncut point of C.

To this end, suppose that q is a cut point of C, and take another cut point

r ∈ U of C = U ∪ {q}, also an r-cut (A,B) of C with q ∈ A. Since C is weakly

orderable, A is connected and q is a cut point of A as well. Moreover, A is also

weakly orderable. Let “≤A” be a compatible linear order on A and a, b ∈ A be

such that

(5.1) a <A q <A b.

Next, for convenience, set E = (a, b)≤A
⊂ A, see (3.1), which is a connected set

being an interval, see [22, Theorem 1.3]. Finally, let

D = V ∪ {q} ⊂ X \ {r} and Y = A ∪ V = A ∪D.

Then Y is a connected subset of X \ {r} because q ∈ A ∩ D and D is con-

nected. Hence, for the same reason as before, Y is weakly orderable. Since

both A and Y are connected, by Theorem 2.1, Y has a compatible linear order

“≤” with ≤ ↾A =≤A. We now have that E = (a, b)≤ = {y ∈ Y : a < y < b}

because y ∈ Y \ E implies that E ⊂ (←, y)≤ or E ⊂ (y,→)≤, see e.g. [11,

Proposition 2.6]. Thus, E is an open subset of Y and V ⊂ Y \ E, therefore

D = V ⊂ Y \E. However, this is impossible because q ∈ E ∩D. A contradiction!

Evidently, the same reasoning applies to show that q is also a noncut point

of D. Since C and D are weakly orderable, so is the space X = C ∪D. �

Proof of Theorem 1.2: If X is weakly cyclically orderable and p ∈ X , then

X \ {p} is weakly orderable [22, Proposition 1.7]. Accordingly, X \ {p} has a con-

tinuous weak selection. Conversely, suppose that X \ {p} has a continuous weak

selection for each p ∈ X . To show that X is weakly cyclically orderable, we
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distinguish the following two cases. If nct(X) = X , take any point p ∈ X and

a nonempty connected subset Y ⊂ X \ {p}. By hypothesis, X \ {p} has a contin-

uous weak selection, hence so does Y . Accordingly, by Theorem 2.2, Y is weakly

orderable which implies that it has at most two noncut points, see e.g. [22, The-

orem 3.5]. Therefore, by [22, Theorem 3.18], X is weakly cyclically orderable. If

X has a cut point, it follows from Lemma 5.1 that X is weakly orderable, hence

it is weakly cyclically orderable as well [22, Proposition 1.6]. �

We conclude this paper with the following consequence of Theorem 1.2, which

provides a natural generalization of [22, Proposition 1.7].

Corollary 5.2. A connected space X is weakly cyclically orderable if and only

if X \ {p} is weakly orderable for every p ∈ X .

Proof: If X is weakly cyclically orderable, then by [22, Proposition 1.7], X \{p}

is weakly orderable for each point p ∈ X . If X \ {p} is weakly orderable for each

point p ∈ X , then each X \ {p}, p ∈ X , has a continuous weak selection. Hence,

by Theorem 1.2, X is weakly cyclically orderable. �
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