[2] Baum S., Stiebitz M.: Coloring of Graphs without Short Odd Paths between Vertices of the Same Color Class. Syddansk Universitet, Odense, 2005.
[4] El-Zahar M., Sauer N. W.:
The chromatic number of the product of two $4$-chromatic graphs is $4$. Combinatorica 5 (1985), no. 2, 121–126.
DOI 10.1007/BF02579374 |
MR 0815577
[5] Godsil C., Roberson D. E., Šámal R., Severini S.:
Sabidussi versus Hedetniemi for three variations of the chromatic number. Combinatorica 36 (2016), no. 4, 395–415.
DOI 10.1007/s00493-014-3132-1 |
MR 3537033
[6] Gyárfás A., Jensen T., Stiebitz M.:
On graphs with strongly independent color-classes. J. Graph Theory 46 (2004), no. 1, 1–14.
DOI 10.1002/jgt.10165 |
MR 2051464
[7] Hahn G., Tardif C.:
Graph homomorphisms: structure and symmetry. Graph symmetry, Montreal, 1996, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 497, Kluwer Acad. Publ., Dordrecht, 1997, pages 107–166.
MR 1468789
[9] Hajiabolhassan H., Taherkhani A.:
Graph powers and graph homomorphisms. Electron. J. Combin. 17 (2010), no. 1, Research Paper 17, 16 pages.
DOI 10.37236/289 |
MR 2587748
[11] Hedetniemi S. T.:
Homomorphisms of Graphs and Automata. Thesis Ph.D., University of Michigan, Michigan, 1966.
MR 2615860
[12] Shitov Y.:
Counterexamples to Hedetniemi's conjecture. Ann. of Math. (2) 190 (2019), no. 2, 663–667.
MR 3997132
[14] Simonyi G., Zsbán A.:
On topological relaxations of chromatic conjectures. European J. Combin. 31 (2010), no. 8, 2110–2119.
MR 2718285
[18] Tardif C., Zhu X.:
A note on Hedetniemi's conjecture, Stahl's conjecture and the Poljak–Rödl function. Electron. J. Combin. 26 (2019), no. 4, Paper No. 4.32, 5 pages.
DOI 10.37236/8787 |
MR 4039338
[20] Wrochna M.: Smaller counterexamples to Hedetniemi's conjecture. available at arXiv:2012.13558 [math.CO] (2020), 9 pages.
[21] Zhu X.:
A survey on Hedetniemi's conjecture. Taiwanese J. Math. 2 (1998), no. 1, 1–24.
MR 1609464
[23] Zhu X.:
A note on the Poljak–Rödl function. Electron. J. Combin. 27 (2020), no. 3, Paper No. 3.2, 4 pages.
MR 4245115