Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Fourier coefficient; automorphic $L$-function, Langlands program
Summary:
Let $f$ be a normalized primitive holomorphic cusp form of even integral weight for the full modular group $\Gamma ={\rm SL} (2,\mathbb {Z})$. Denote by $\lambda _{f}(n)$ the $n$th normalized Fourier coefficient of $f$. We are interested in the average behaviour of the sum $$ \sum _{a^{2} + b^{2}\leq x} \lambda _{f}^{j}(a^{2}+b^{2}) $$ for $x\geq 1$, where $a,b\in \mathbb {Z}$ and $j\geq 9$ is any fixed positive integer. In a similar manner, we also establish analogous results for the normalized coefficients of Dirichlet expansions of associated symmetric power $L$-functions and Rankin-Selberg $L$-functions.
References:
[1] Clozel, L., Thorne, J. A.: Level-raising and symmetric power functoriality. I. Compos. Math. 150 (2014), 729-748. DOI 10.1112/S0010437X13007653 | MR 3209793 | Zbl 1304.11040
[2] Clozel, L., Thorne, J. A.: Level raising and symmetric power functoriality. II. Ann. Math. (2) 181 (2015), 303-359. DOI 10.4007/annals.2015.181.1.5 | MR 3272927 | Zbl 1339.11060
[3] Clozel, L., Thorne, J. A.: Level-raising and symmetric power functoriality. III. Duke Math. J. 166 (2017), 325-402. DOI 10.1215/00127094-3714971 | MR 3600753 | Zbl 1372.11054
[4] Deligne, P.: La conjecture de Weil. I. Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. DOI 10.1007/BF02684373 | MR 0340258 | Zbl 0287.14001
[5] Fomenko, O. M.: Fourier coefficients of parabolic forms, and automorphic $L$-functions. J. Math. Sci., New York 95 (1999), 2295-2316. DOI 10.1007/BF02172473 | MR 1691291
[6] Fomenko, O. M.: Identities involving the coefficients of automorphic $L$-functions. J. Math. Sci., New York 133 (2006), 1749-1755. DOI 10.1007/s10958-006-0086-x | MR 2119744 | Zbl 1094.11018
[7] Fomenko, O. M.: Mean value theorems for automorphic $L$-functions. St. Petersbg. Math. J. 19 (2008), 853-866. DOI 10.1090/S1061-0022-08-01024-8 | MR 2381948 | Zbl 1206.11061
[8] Gelbart, S., Jacquet, H.: A relation between automorphic representations of $GL(2)$ and $GL(3)$. Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471-542. DOI 10.24033/asens.1355 | MR 0533066 | Zbl 0406.10022
[9] Hafner, J. L., Ivić, A.: On sums of Fourier coefficients of cusp forms. Enseign. Math., II. Sér. 35 (1989), 375-382. DOI 10.5169/seals-57381 | MR 1039952 | Zbl 0696.10020
[10] He, X.: Integral power sums of Fourier coefficients of symmetric square $L$-functions. Proc. Am. Math. Soc. 147 (2019), 2847-2856. DOI 10.1090/proc/14516 | MR 3973888 | Zbl 1431.11062
[11] Hecke, E.: Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik. Abh. Math. Semin. Univ. Hamb. 5 (1927), 199-224 German \99999JFM99999 53.0345.02. DOI 10.1007/BF02952521 | MR 3069476
[12] Huang, B.: On the Rankin-Selberg problem. Math. Ann. 381 (2021), 1217-1251. DOI 10.1007/s00208-021-02186-7 | MR 4333413 | Zbl 07498337
[13] Ivić, A.: On zeta-functions associated with Fourier coefficients of cusp forms. Proceedings of the Amalfi Conference on Analytic Number Theory Universitá di Salerno, Salerno (1992), 231-246. MR 1220467 | Zbl 0787.11035
[14] Iwaniec, H., Kowalski, E.: Analytic Number Theory. Colloquium Publications. American Mathematical Society 53. AMS, Providence (2004). DOI 10.1090/coll/053 | MR 2061214 | Zbl 1059.11001
[15] Jacquet, H., Piatetski-Shapiro, I. I., Shalika, J. A.: Rankin-Selberg convolutions. Am. J. Math. 105 (1983), 367-464. DOI 10.2307/2374264 | MR 0701565 | Zbl 0525.22018
[16] Jacquet, H., Shalika, J. A.: On Euler products and the classification of automorphic representations. I. Am. J. Math. 103 (1981), 499-558. DOI 10.2307/2374103 | MR 0618323 | Zbl 0473.12008
[17] Jacquet, H., Shalika, J. A.: On Euler products and the classification of automorphic forms. II. Am. J. Math. 103 (1981), 777-815. DOI 10.2307/2374050 | MR 0623137 | Zbl 0491.10020
[18] Jiang, Y., Lü, G.: Uniform estimates for sums of coefficients of symmetric square $L$-function. J. Number Theory 148 (2015), 220-234. DOI 10.1016/j.jnt.2014.09.008 | MR 3283177 | Zbl 1380.11037
[19] Kim, H. H.: Functoriality for the exterior square of $GL_4$ and the symmetric fourth of $GL_2$. J. Am. Math. Soc. 16 (2003), 139-183. DOI 10.1090/S0894-0347-02-00410-1 | MR 1937203 | Zbl 1018.11024
[20] Kim, H. H., Shahidi, F.: Cuspidality of symmetric power with applications. Duke Math. J. 112 (2002), 177-197. DOI 10.1215/S0012-9074-02-11215-0 | MR 1890650 | Zbl 1074.11027
[21] Kim, H. H., Shahidi, F.: Functorial products for $GL_2\times GL_3$ and the symmetric cube for $GL_2$. Ann. Math. (2) 155 (2002), 837-893. DOI 10.2307/3062134 | MR 1923967 | Zbl 1040.11036
[22] Lao, H., Luo, S.: Sign changes and nonvanishing of Fourier coefficients of holomorphic cusp forms. Rocky Mt. J. Math. 51 (2021), 1701-1714. DOI 10.1216/rmj.2021.51.1701 | MR 4382993 | Zbl 1486.11056
[23] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687-716. DOI 10.1093/qmath/haq012 | MR 2825478 | Zbl 1269.11044
[24] Lau, Y.-K., Lü, G., Wu, J.: Integral power sums of Hecke eigenvalues. Acta Arith. 150 (2011), 193-207. DOI 10.4064/aa150-2-7 | MR 2836386 | Zbl 1300.11042
[25] Lü, G.: Average behavior of Fourier coefficients of cusp forms. Proc. Am. Math. Soc. 137 (2009), 1961-1969. DOI 10.1090/S0002-9939-08-09741-4 | MR 2480277 | Zbl 1241.11054
[26] Lü, G.: The sixth and eighth moments of Fourier coefficients of cusp forms. J. Number Theory 129 (2009), 2790-2800. DOI 10.1016/j.jnt.2009.01.019 | MR 2549533 | Zbl 1195.11060
[27] Lü, G.: Uniform estimates for sums of Fourier coefficients of cusp forms. Acta Math. Hung. 124 (2009), 83-97. DOI 10.1007/s10474-009-8153-7 | MR 2520619 | Zbl 1200.11031
[28] Lü, G.: On higher moments of Fourier coefficients of holomorphic cusp forms. Can. J. Math. 63 (2011), 634-647. DOI 10.4153/CJM-2011-010-5 | MR 2828536 | Zbl 1250.11046
[29] Luo, S., Lao, H., Zou, A.: Asymptotics for the Dirichlet coefficients of symmetric power $L$-functions. Acta Arith. 199 (2021), 253-268. DOI 10.4064/aa191112-24-12 | MR 4296723 | Zbl 1477.11079
[30] Moreno, C. J., Shahidi, F.: The fourth moment of Ramanujan $\tau$-function. Math. Ann. 266 (1983), 233-239. DOI 10.1007/BF01458445 | MR 0724740 | Zbl 0508.10014
[31] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 1-116. DOI 10.1007/s10240-021-00127-3 | MR 4349240 | Zbl 07458825
[32] Newton, J., Thorne, J. A.: Symmetric power functoriality for holomorphic modular forms. II. Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 117-152. DOI 10.1007/s10240-021-00126-4 | MR 4349241 | Zbl 07458826
[33] Rankin, R. A.: Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. II. The order of the Fourier coefficients of the integral modular forms. Proc. Camb. Philos. Soc. 35 (1939), 357-372. DOI 10.1017/S0305004100021101 | MR 0000411 | Zbl 0021.39202
[34] Rankin, R. A.: Sums of cusp form coefficients. Automorphic Forms and Analytic Number Theory University Montréal, Montréal (1990), 115-121. MR 1111014 | Zbl 0735.11023
[35] Rudnick, Z., Sarnak, P.: Zeros of principal $L$-functions and random matrix theory. Duke Math. J. 81 (1996), 269-322. DOI 10.1215/S0012-7094-96-08115-6 | MR 1395406 | Zbl 0866.11050
[36] Sankaranarayanan, A.: On a sum involving Fourier coefficients of cusp forms. Lith. Math. J. 46 (2006), 459-474. DOI 10.1007/s10986-006-0042-y | MR 2320364 | Zbl 1162.11337
[37] Sankaranarayanan, A., Singh, S. K., Srinivas, K.: Discrete mean square estimates for coefficients of symmetric power $L$-functions. Acta Arith. 190 (2019), 193-208. DOI 10.4064/aa180819-6-10 | MR 3984265 | Zbl 1465.11109
[38] Selberg, A.: Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid. 43 (1940), 47-50 German. MR 0002626 | Zbl 0023.22201
[39] Shahidi, F.: On certain $L$-functions. Am. J. Math. 103 (1981), 297-355. DOI 10.2307/2374219 | MR 0610479 | Zbl 0467.12013
[40] Shahidi, F.: Fourier transforms of intertwining operators and Plancherel measure for $GL(n)$. Am. J. Math. 106 (1984), 67-111. DOI 10.2307/2374430 | MR 0729755 | Zbl 0567.22008
[41] Shahidi, F.: Local coefficients as Artin factors for real groups. Duke Math. J. 52 (1985), 973-1007. DOI 10.1215/S0012-7094-85-05252-4 | MR 0816396 | Zbl 0674.10027
[42] Shahidi, F.: Third symmetric power $L$-functions for $GL(2)$. Compos. Math. 70 (1989), 245-273. MR 1002045 | Zbl 0684.10026
[43] Shahidi, F.: A proof of Langland's conjecture on Plancherel measures; Complementary series for $p$-adic groups. Ann. Math. (2) 132 (1990), 273-330. DOI 10.2307/1971524 | MR 1070599 | Zbl 0780.22005
[44] Tang, H.: Estimates for the Fourier coefficients of symmetric square $L$-functions. Arch. Math. 100 (2013), 123-130. DOI 10.1007/s00013-013-0481-8 | MR 3020126 | Zbl 1287.11061
[45] Tang, H., Wu, J.: Fourier coefficients of symmetric power $L$-functions. J. Number Theory 167 (2016), 147-160. DOI 10.1016/j.jnt.2016.03.005 | MR 3504040 | Zbl 1417.11050
[46] Wu, J.: Power sums of Hecke eigenvalues and application. Acta Arith. 137 (2009), 333-344. DOI 10.4064/aa137-4-3 | MR 2506587 | Zbl 1232.11054
[47] Zhai, S.: Average behavior of Fourier coefficients of cusp forms over sum of two squares. J. Number Theory 133 (2013), 3862-3876. DOI 10.1016/j.jnt.2013.05.013 | MR 3084303 | Zbl 1295.11041
Partner of
EuDML logo