[3] Cox, D. A.:
Primes of the Form $x^2+ny^2$: Fermat, Class Field Theory, and Complex Multiplication. Pure and Applied Mathematics. A Wiley Series of Texts, Monographs, and Tracts. John Wiley & Sons, Hoboken (2013).
DOI 10.1002/9781118400722 |
MR 3236783 |
Zbl 1275.11002
[5] Doyle, G., Williams, K. S.:
A positive-definite ternary quadratic form does not represent all positive integers. Integers 17 (2017), Article ID A.41, 19 pages.
MR 3708292 |
Zbl 1412.11065
[6] Duke, W., Schulze-Pillot, R.:
Representations of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids. Invent. Math. 99 (1990), 49-57.
DOI 10.1007/BF01234411 |
MR 1029390 |
Zbl 0692.10020
[11] Kaplansky, I.:
Linear Algebra and Geometry: A Second Course. Dover Publications, Mineola (2003).
MR 2001037 |
Zbl 1040.15001
[12] Lebesgue, V. A.: Tout nombre impair est la somme de quatre carrés dont deux sont égaux. J. Math. Pures Appl. (2) 2 (1857), 149-152 French.
[17] Ramanujan, S.: On the expression of a number in the form $ax^2 + by^2 + cz^2 + du^2$. Proc. Camb. Philos. Soc. 19 (1917), 11-21 \99999JFM99999 46.0240.01.