Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
sharp character; sharp pair; finite group
Summary:
For a complex character $ \chi $ of a finite group $ G $, it is known that the product $ {\rm sh}(\chi ) = \prod _{ l \in L(\chi )} (\chi (1) - l) $ is a multiple of $ |G| $, where $ L(\chi ) $ is the image of $ \chi $ on $ G-\{1\}$. The character $ \chi $ is said to be a sharp character of type $ L $ if $ L=L(\chi ) $ and $ {\rm sh} (\chi )=|G| $. If the principal character of $G$ is not an irreducible constituent of $\chi $, then the character $\chi $ is called normalized. It is proposed as a problem by P. J. Cameron and M. Kiyota, to find finite groups $G$ with normalized sharp characters of type $\{-1,0,2\}$. Here we prove that such a group with nontrivial center is isomorphic to the dihedral group of order 12.
References:
[1] Adhami, S. R., Iranmanesh, A.: On sharp characters of type $\{ -1,3 \}$ or $\{ -3,1 \}$. J. Algebra Appl. 16 (2017), Article ID 1750004, 10 pages. DOI 10.1142/S0219498817500049 | MR 3590865 | Zbl 1377.20005
[2] Alvis, D., Nozawa, S.: Sharp characters with irrational values. J. Math. Soc. Japan 48 (1996), 567-591. DOI 10.2969/jmsj/04830567 | MR 1389996 | Zbl 0866.20004
[3] Blichfeldt, H. F.: A theorem concerning the invariants of linear homogeneous groups, with some applications to substitution groups. Trans. Am. Math. Soc. 5 (1904), 461-466 \99999JFM99999 35.0161.01. DOI 10.1090/S0002-9947-1904-1500684-5 | MR 1500684
[4] Cameron, P. J., Kataoka, T., Kiyota, M.: Sharp characters of finite groups of type $\{ -1, 1 \}$. J. Algebra 152 (1992), 248-258. DOI 10.1016/0021-8693(92)90099-8 | MR 1190415 | Zbl 0776.20002
[5] Cameron, P. J., Kiyota, M.: Sharp characters of finite groups. J. Algebra 115 (1988), 125-143. DOI 10.1016/0021-8693(88)90285-2 | MR 0937604 | Zbl 0651.20010
[6] Group, GAP: GAP - Groups, Algorithms, Programming: A System for Computational Discrete Algebra: Version 4.11.0. Available at https://www.gap-system.org/ (2020).
[7] Isaacs, I. M.: Character Theory of Finite Groups. AMS Chelsea Publishing, Providence (2006). DOI 10.1090/chel/359 | MR 2270898 | Zbl 1119.20005
[8] Kiyota, M.: An inequality for finite permutation groups. J. Comb. Theory, Ser. A 27 (1979), 119. DOI 10.1016/0097-3165(79)90012-8 | MR 0541348 | Zbl 0417.20003
[9] Nozawa, S.: Sharp character of finite groups having prescribed values. Tsukuba J. Math. 16 (1992), 269-277. DOI 10.21099/tkbjm/1496161845 | MR 1178680 | Zbl 0819.20009
[10] Nozawa, S., Uno, M.: On sharp characters of rank 2 with rational values. J. Algebra 286 (2005), 325-340. DOI 10.1016/j.jalgebra.2004.12.018 | MR 2128020 | Zbl 1071.20008
[11] Yoguchi, T.: On determining the sharp characters of finite groups. JP J. Algebra Number Theory Appl. 11 (2008), 85-98. MR 2458670 | Zbl 1169.20006
[12] Yoguchi, T.: On sharp characters of type $\{ \ell, \ell + p \}$. Kyushu J. Math. 65 (2011), 179-195. DOI 10.2206/kyushujm.65.179 | MR 2828384 | Zbl 1260.20012
Partner of
EuDML logo