Previous |  Up |  Next

Article

Keywords:
additive decomposition; rank constraint; zero pattern constraint; directed bipartite graph; $ß{L}$-free directed bipartite graph; permutation $ß{L}$-free directed bipartite graph; Bell number; Stirling partition number
Summary:
This paper deals with additive decompositions $A=A_1+\cdots +A_p$ of a given matrix $A$, where the ranks of the summands $A_1,\ldots , A_p$ are prescribed and meet certain zero pattern requirements. The latter are formulated in terms of directed bipartite graphs.
References:
[1] Bart, H., Ehrhardt, T., Silbermann, B.: Rank decomposition in zero pattern matrix algebras. Czech. Math. J. 66 (2016), 987-1005. DOI 10.1007/s10587-016-0305-7 | MR 3556880 | Zbl 1413.15010
[2] Bart, H., Ehrhardt, T., Silbermann, B.: Echelon type canonical forms in upper triangular matrix algebras. Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics Operator Theory: Advances and Applications 259. Birkhäuser, Basel (2017), 79-124. DOI 10.1007/978-3-319-49182-0_8 | MR 3644514 | Zbl 1365.15014
[3] Bart, H., Ehrhardt, T., Silbermann, B.: $ß{L}$-free directed bipartite graphs and echelon-type canonical forms. Operator Theory, Analysis and the State Space Approach Operator Theory: Advances and Applications 271. Birkhäuser, Cham (2018), 75-117. DOI 10.1007/978-3-030-04269-1_3 | MR 3889652 | Zbl 1427.15016
[4] Bart, H., Ehrhardt, T., Silbermann, B.: Rank decomposition under zero pattern constraints and $ß{L}$-free directed graphs. Linear Algebra Appl. 621 (2021), 135-180. DOI 10.1016/j.laa.2021.03.010 | MR 4231570 | Zbl 1464.15002
[5] Bart, H., Wagelmans, A. P. M.: An integer programming problem and rank decomposition of block upper triangular matrices. Linear Algebra Appl. 305 (2000), 107-129. DOI 10.1016/S0024-3795(99)00219-0 | MR 1733797 | Zbl 0951.15013
[6] Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publications 25. AMS, Providence (1967). DOI 10.1090/coll/025 | MR 0227053 | Zbl 0153.02501
[7] Charalambides, C. A.: Enumerative Combinatorics. CRC Press Series on Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2002). DOI 10.1201/9781315273112 | MR 1937238 | Zbl 1001.05001
[8] Habib, M., Jegou, R.: $N$-free posets as generalizations of series-parallel posets. Discrete Appl. Math. 12 (1985), 279-291. DOI 10.1016/0166-218X(85)90030-7 | MR 0813975 | Zbl 0635.06002
[9] Riordan, J.: Combinatorial Identities. John Wiley & Sons, New York (1968). MR 0231725 | Zbl 0194.00502
[10] Stanley, R. P.: Enumerative Combinatorics. Vol. 1. Cambridge Studies in Advanced Mathematics 49. Cambridge University Press, Cambridge (1997). DOI 10.1017/CBO9780511805967 | MR 1442260 | Zbl 0889.05001
Partner of
EuDML logo