Previous |  Up |  Next

Article

Keywords:
power integral base; theorem of Ore; prime ideal factorization
Summary:
Let $K={\mathbb Q}(\alpha)$ be a number field generated by a complex root $\alpha$ of a monic irreducible polynomial $f(x)=x^{18}-m$, $m\neq \mp 1$, is a square free rational integer. We prove that if $ m \equiv 2$ or $3 {\rm(mod }{ 4})$ and $m\not\equiv \mp 1 {\rm(mod }{ 9})$, then the number field $K$ is monogenic. If $ m \equiv 1 {\rm(mod }{ 4})$ or $m\equiv 1 {\rm(mod }{ 9})$, then the number field $K$ is not monogenic.
References:
[1] Ahmad S., Nakahara T., Hameed A.: On certain pure sextic fields related to a problem of Hasse. Int. J. Algebra Comput. 26 (2016), no. 3, 577–583. DOI 10.1142/S0218196716500259 | MR 3506350
[2] Ahmad S., Nakahara T., Husnine S. M.: Power integral bases for certain pure sextic fields. Int. J. Number Theory 10 (2014), no. 8, 2257–2265. MR 3273484
[3] El Fadil L.: Computation of a power integral basis of a pure cubic number field. Int. J. Contemp. Math. Sci. 2 (2007), no. 13–16, 601–606. MR 2355834
[4] El Fadil L.: On Newton polygons techniques and factorization of polynomials over Henselian fields. J. Algebra Appl. 19 (2020), no. 10, 2050188, 9 pages. DOI 10.1142/S0219498820501881 | MR 4140128
[5] El Fadil L.: On power integral bases for certain pure number fields defined by $x^{24}-m$. Studia Sci. Math. Hungar. 57 (2020), no. 3, 397–407. MR 4188148
[6] El Fadil L.: On power integral bases for certain pure number fields. Publ. Math. Debrecen 100 (2022), no. 1–2, 219–231. DOI 10.5486/PMD.2022.9138 | MR 4389255
[7] El Fadil L., Montes J., Nart E.: Newton polygons and $p$-integral bases of quartic number fields. J. Algebra Appl. 11 (2012), no. 4, 1250073, 33 pages. DOI 10.1142/S0219498812500739 | MR 2959422
[8] Funakura T.: On integral bases of pure quartic fields. Math. J. Okayama Univ. 26 (1984), 27–41. MR 0779772
[9] Gaál I.: Power integral bases in algebraic number fields. Ann. Univ. Sci. Budapest. Sect. Comput. 18 (1999), 61–87. MR 2118246
[10] Gaál I.: Diophantine Equations and Power Integral Bases. Theory and Algorithm, Birkhäuser/Springer, Cham, 2019. MR 3970246
[11] Gaál I., Olajos P., Pohst M.: Power integral bases in orders of composite fields. Experiment. Math. 11 (2002), no. 1, 87–90. DOI 10.1080/10586458.2002.10504471 | MR 1960303
[12] Gaál I., Remete L.: Binomial Thue equations and power integral bases in pure quartic fields. J. Algebra Number Theory Appl. 32 (2014), no. 1, 49–61.
[13] Gaál I., Remete L.: Integral bases and monogenity of pure fields. J. Number Theory 173 (2017), 129–146. DOI 10.1016/j.jnt.2016.09.009 | MR 3581912
[14] Hameed A., Nakahara T.: Integral bases and relative monogenity of pure octic fields. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 58(106) (2015), no. 4, 419–433. MR 3443598
[15] Ore Ö.: Newtonsche Polygone in der Theorie der algebraischen Körper. Math. Ann. 99 (1928), no. 1, 84–117 (German). DOI 10.1007/BF01459087 | MR 1512440
[16] Pethö A., Pohst M.: On the indices of multiquadratic number fields. Acta Arith. 153 (2012), no. 4, 393–414. DOI 10.4064/aa153-4-4 | MR 2925379
Partner of
EuDML logo