Previous |  Up |  Next

Article

Keywords:
quasigroup; linear identity; associativity; commutativity
Summary:
We study identities of the form $$ L_{x_0} \varphi_1 \cdots \varphi_n R_{x_{n+1}} = R_{x_{n+1}} \varphi_{\sigma(1)} \cdots \varphi_{\sigma(n)} L_{x_0} $$ in quasigroups, where $n \geq 1$, $\sigma$ is a permutation of $\{1, \ldots, n\}$, and for each $i$, $\varphi_i$ is either $L_{x_i}$ or $R_{x_i}$. We prove that in a quasigroup, every such identity implies commutativity. Moreover, if $\sigma$ is chosen randomly and uniformly, it also satisfies associativity with probability approaching $1$ as $n \rightarrow \infty$.
References:
[1] Akhtar R.: On generalized associativity in groupoids. Quasigroups Related Systems 24 (2016), no. 1, 1–6. MR 3506153
[2] Akhtar R.: Symmetric linear operator identities in quasigroups. Comment. Math. Univ. Carolin. 58 (2017), no. 4, 401–417. MR 3737114
[3] Akhtar R., Arp A., Kaminski M., Van Exel J., Vernon D., Washington C.: The varieties of Bol–Moufang quasigroups defined by a single operation. Quasigroups Related Systems 20 (2012), no. 1, 1–10. MR 3013362
[4] Belousov V. D.: Systems of quasigroups with generalized identities. Uspehi Mat. Nauk 20 (1965), no. 1 (121), 75–146 (Russian). MR 0173724 | Zbl 0135.03503
[5] Krapež A.: Generalized linear functional equations on almost quasigroups. I. Equations with at most two variables. Aequationes Math. 61 (2001), no. 3, 255–280. DOI 10.1007/s000100050177 | MR 1833145 | Zbl 0993.39022
[6] Krapež A.: Quadratic level quasigroup equations with four variables. I. Publ. Inst. Math. (Beograd) (N.S.) 81 (95) (2007), 53–67. DOI 10.2298/PIM0795053K | MR 2401314 | Zbl 1229.39035
[7] Krapež A.: Quadratic level quasigroup equations with four variables. II: The lattice of varieties. Publ. Inst. Math. (Beograd) (N.S.) 93 (107) (2013), 29–47. DOI 10.2298/PIM1307029K | MR 3089075
[8] Niemenmaa M., Kepka T.: On a general associativity law in groupoids. Monatsh. Math. 113 (1992), no. 1, 51–57. DOI 10.1007/BF01299305 | MR 1149060 | Zbl 0768.20032
[9] Pflugfelder H.: Quasigroups and Loops: Introduction. Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. MR 1125767 | Zbl 0715.20043
[10] Phillips J. D., Vojtěchovský P.: The varieties of loops of Bol–Moufang type. Algebra Universalis 54 (2005), no. 3, 259–271. DOI 10.1007/s00012-005-1941-1 | MR 2219409
[11] Phillips J. D., Vojtěchovský P.: The varieties of quasigroups of Bol–Moufang type: an equational reasoning approach. J. Algebra 293 (2005), no. 1, 17–33. DOI 10.1016/j.jalgebra.2005.07.011 | MR 2173964
[12] Robbins H.: A remark on Stirling's formula. Amer. Math. Monthly 62 (1955), 26–29. DOI 10.2307/2308012 | MR 0069328
Partner of
EuDML logo