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Linear operator identities in quasigroups

Reza Akhtar

Abstract. We study identities of the form

Lx0ϕ1 · · ·ϕnRxn+1 = Rxn+1ϕσ(1) · · ·ϕσ(n)Lx0

in quasigroups, where n ≥ 1, σ is a permutation of {1, . . . , n}, and for each i,
ϕi is either Lxi

or Rxi
. We prove that in a quasigroup, every such identity

implies commutativity. Moreover, if σ is chosen randomly and uniformly, it also
satisfies associativity with probability approaching 1 as n → ∞.
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1. Introduction

A quasigroup is a nonempty set G, equipped with a binary operation (written

as juxtaposition), in which the left multiplication maps La : G → G, x 7→ ax, and

the right multiplication maps Ra : G → G, x 7→ xa, are bijective for all a ∈ G.

A loop is a quasigroup with a two sided neutral element, i.e. an element e ∈ G

such that Le = Re = 1G, where 1G is the identity map from G to itself. For

general information on quasigroups, see [9].

When working with quasigroups, it is often convenient to work with a countably

infinite set X = {x0, x1, x2, . . .} of independent indeterminates. Define sets of

left multiplication symbols L = {Lx : x ∈ X} and right multiplication symbols

R = {Rx : x ∈ X}, and let S = L ∪R. A word in S is a formal expression W =

ϕ1 · · ·ϕd, where d ≥ 0 and ϕi ∈ S for 1 ≤ i ≤ d. We write W = W (x1, . . . , xm) to

express the fact that x1, . . . , xm are the (distinct) indeterminates appearing in W .

Such a word W is heterogeneous if the symbols in W are drawn from both L
and R, or homogeneous otherwise. A word W = ϕ1 · · ·ϕd is called alternating

if ϕi is a left multiplication symbol when i is odd and a right multiplication

symbol when i is even, or vice versa. We denote by S∗ the set of all words in S.
We also need some notation to describe the process of substituting elements

of a fixed quasigroup G for the indeterminates in a word W ∈ S∗ to obtain

DOI 10.14712/1213-7243.2022.010



2 R. Akhtar

a map from G to itself. One might think of this process as realizing an ab-

stract word in left and right multiplication symbols as an actual composition of

left and right multiplication maps in G. Provided that W = W (x1, . . . , xd) =

ϕ1(x1) · · ·ϕd(xd) ∈ S∗ and a1, . . . , ad ∈ G, we write W (a1, . . . , ad) to denote the

composition ϕ1(a1) · · ·ϕd(ad).

An identity (in S∗) is a statement I : W1 = W2, where W1,W2 ∈ S∗ are words.

Such an identity is called linear if every indeterminate present appears exactly

once in each of W1 and W2. An identity I is satisfied in a quasigroup G if the

two sides of I are equal upon substitution of any choice of elements of G for

the indeterminates appearing in I. By extension of terminology, we describe an

identity as alternating (or heterogeneous, homogeneous) if the same is true for

the words on either side for the equality symbol.

It is well-known that an associative quasigroup is in fact a group. In [8],

M. Niemenmaa and T. Kepka asked which linear identities – that is, which equa-

tions in which each indeterminate appears exactly once on each side – imply

associativity. They showed that for all n ≥ 3, the “generalized associativity”

identity

(1) x1(x2(. . . (xn−1xn) . . .)) = ((. . . (x1x2) . . .)xn−1)xn

is equivalent to associativity for division groupoids. A key insight in their proof

is to rewrite (1) in terms of left and right multiplication maps, working, to the

extent possible, with maps rather than directly with elements. In this language,

the associative law is the “linear operator identity” LyRz = RzLy, while the

commutative law is the identity Lx = Rx.

Questions of a similar nature, but concerning different families of identities,

have been studied by A. Krapež, see [6], [7]. There are also many papers in

the literature, for example, [4] and [5], concerned with functional equations on

quasigroups. These papers use terminology and formalism superficially similar

to that used in the present article and our past work; however, their focus is

primarily on finding operations that satisfy functional equations of a prescribed

type, whereas our focus is on studying implications among various equations, in

the spirit of [3], [10], and [11].

Having expressed the associative law as the statement that left multiplication

maps commute with right multiplication maps, there are several ways to study

“map-theoretic” generalizations of it. In earlier work [1], we proved that every

identity of the form

Lx1Rx2 · · ·Lx2n−1Rx2n = Rx2nLx2n−1 · · ·Rx2Lx1 , n ≥ 2,
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implies both commutativity and associativity. This was generalized further in [2],

in which we studied quasigroups satisfying a symmetric linear operator identity,

that is, an identity of the form

(2) ϕ1ϕ2 · · ·ϕn = ϕn · · ·ϕ2ϕ1

in which each ϕi is either Lxi
or Rxi

. The main result of [2] is the following:

Theorem ([2, Theorem 3.1]). Let I be a symmetric linear identity. Then

◦ I implies commutativity if and only if n ≥ 3, and I is heterogeneous

but not an alternating identity of odd length.

◦ I implies associativity if and only if I is heterogeneous and of even

length.

It is worthy of note that for n ≥ 3, the vast majority of the 2n identities of

the form (2) imply commutativity when n ≥ 3 is odd and both commutativity

and associativity when n is even. It is natural, therefore, to ask if a similar

result might be deduced if one does not insist upon the condition of symmetry. In

particular, is it the case that given a permutation σ ∈ Sn, the identity ϕ1 . . . ϕn =

ϕσ(1) · · ·ϕσ(n) “usually” implies commutativity and/or associativity? As phrased,

the question is a bit too broad to be attacked directly. However, by imposing just

one condition binding the form of the identity more closely to that of the prototype

LyRz = RzLy that inspired these problems, we are able to prove a result of fairly

broad scope. We therefore restrict consideration to identities of the form:

(3) Lx0ϕ1 . . . ϕnRxn+1 = Rxn+1ϕσ(1) · · ·ϕσ(n)Lx0

in which n ≥ 2, x0, . . . , xn+1 are independent indeterminates, and ϕi is either Lxi

or Rxi
for 1 ≤ i ≤ n. Our main result, see Proposition 3.1 and Corollary 3.4, is

the following:

◦ For every σ ∈ Sn the identity (3) implies commutativity.

◦ Suppose a permutation σ is drawn randomly and uniformly from Sn.

Then (3) implies associativity with probability approaching 1 as n → ∞.

We remark that the language of probability in the above statement is merely

a convenience to elucidate the meaning of the result. The proofs themselves

are purely combinatorial and do not draw upon any machinery from probability

theory. Also, the probabilistic statement may be made more precise by examining

the argument closely.

One cannot expect that the second assertion holds for all σ ∈ Sn. Since the

symmetric identities (2) are subsumed under those of type (3) by taking σ(i) =

n − i + 1, and alternating identities of odd length do not imply commutativity,

there exist counterexamples for arbitrarily large values of n. The situation for n
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even is no more hopeful; the software Mace4 found a quasigroup of order 4 in

which LwRxRyRz = RzRxRyLw is satisfied. From its Cayley table reproduced

below, one can easily see that it is not a group.

* 0 1 2 3

0 0 2 3 1

1 2 0 1 3

2 3 1 0 2

3 1 3 2 0

The combinatorial arguments in the proof of the main theorem are rather

technical, so we have relegated them to Section 2. The main results appear in

Section 3.

2. Combinatorial arguments

In this section we present calculations pertaining to the symmetric group Sn.

We write f(x) = O(g(x)) if there exists C > 0 such that |f(x)| ≤ C|g(x)| for
sufficiently large x. We also write f(x) = o(g(x)) as x → ∞ if for every ε > 0

there exists N > 0 such that |f(x)| ≤ ε|g(x)| for x > N .

For σ ∈ Sn, define m(σ) = gcd{σ(i) − i : 1 ≤ i ≤ n, σ(i) 6= i}. Next, for d,

1 ≤ d ≤ n− 1, define S
(d)
n = |{σ ∈ Sn : m(σ) = d}|. Clearly Sn is partitioned by

the subsets S
(d)
n , 1 ≤ d ≤ n − 1. Our goal is to show that

∣

∣S
(1)
n

∣

∣ = (1 − o(1))n!,

i.e. that the vast majority of permutations belong to S
(1)
n . For the balance of this

section we assume n is a large integer.

Fix d as above and let J(n) = [1, n]∩ Z. Then I(n) is partitioned by the sub-

sets J(n, k) = {m ∈ I(n) : m ≡ k (mod d)}, 1 ≤ k ≤ d. Moreover, if σ ∈ S
(d)
n ,

then σ induces a permutation of each of the sets J(n, k), 1 ≤ k ≤ d. For conve-

nience, let q =
⌊

n
d

⌋

and define r = n− qd. Observe that

|J(n, k)| =
{

q + 1, 1 ≤ k ≤ r,

q, r < k ≤ d.

Lemma 2.1. We have

1

n!

n−1
∑

d=2

|S(d)
n | = o(1).

Proof: We will need explicit bounds associated with Stirling’s approximation,

see for example [12]:

(4)
√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n
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and the well-known inequality

(5) ex ≥ 1 + x, x ≥ 0.

Then
∣

∣S(d)
n

∣

∣ ≤ ((q + 1)!)r(q!)d−r = (q!)d(q + 1)r ≤
((n

d

)

!
)d(n

d
+ 1

)d

.

Applying the right inequality of (4), we have

∣

∣S(d)
n

∣

∣ ≤ nn+d/2

dn+d/2
e−n+d

(n

d
+1

)d

= (
√
2π nn+1/2e−n)

(

1√
2π

n(d−1)/2ed(n/d+ 1)d

dn+d/2

)

.

Now applying the left inequality of (4) gives

(6)
∣

∣S(d)
n

∣

∣ ≤ n!

(

1√
2π

n(d−1)/2ed(n/d+ 1)d

dn+d/2

)

.

If 2 ≤ d ≤ 6, (6) yields

1

n!

∣

∣S(d)
n

∣

∣ ≤ 1√
2π

n5/2e6(n/2 + 1)6

2n+1
= O

(

n17/2

2n

)

.

If 7 ≤ d ≤ l =
⌊

n
2

⌋

, we apply (5) to (6) to obtain

1

n!

∣

∣S(d)
n

∣

∣ ≤ 1√
2πn

(

en1/2

d1/2

)d
( e

d

)n

.

Now it is easily checked that F (d) = (en1/2/d1/2)d is increasing on [0, en+1], so in

particular, F (d) ≤ F (n/2) = (21/4e1/2)n. Thus

1

n!

∣

∣S(d)
n

∣

∣ ≤ 1√
2πn

(

21/4e3/2

d

)n

.

Also,
l

∑

d=7

1

dn
≤

∫

∞

6

1

xn
dx =

1

(n− 1)6n−1
.

Therefore,

1

n!

l
∑

d=7

∣

∣S(d)
n

∣

∣ ≤ 1√
2πn

(21/4e3/2)n
l

∑

d=7

1

dn
≤ 6

(n− 1)
√
2πn

(

21/4e3/2

6

)n

= O

(

(8/9)n

n3/2

)

.
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Finally, when l + 1 ≤ d ≤ n− 1, then σ ∈ S
(d)
n only if σ is a product of no more

than n− d transpositions of the form (i i+ d). Thus |S(d)
n | ≤ 2n−d, and so

1

n!

n−1
∑

d=l+1

∣

∣S(d)
n

∣

∣ ≤ 2n/2+1

n!
= O

(

1√
n

(
√
2e

n

)n)

by (4). Collecting all these bounds together, we conclude 1
n!

∑n−1
d=2

∣

∣S
(d)
n

∣

∣ = o(1).

�

Corollary 2.2. Suppose a permutation σ is drawn randomly and uniformly

from Sn. Then σ ∈ S
(1)
n with probability 1− o(1).

3. Results

Throughout this section, we assume x0, . . . , xn+1 are independent indetermi-

nates.

Proposition 3.1. Let σ ∈ Sn, and suppose ϕi is either Lxi
or Rxi

for 1 ≤ i ≤ n.

Then every quasigroup satisfying an identity of the form

(7) Lx0ϕ1 · · ·ϕnRxn+1 = Rxn+1ϕσ(1) · · ·ϕσ(n)Lx0

is commutative.

Proof: For convenience, write W (x1, . . . , xn) = ϕ1 · · ·ϕn and W ′(x1, . . . , xn) =

ϕσ(1) · · ·ϕσ(n) so that the identity reads

(8) Lx0W (x1, . . . , xn)Rxn+1 = Rxn+1W
′(x1, . . . , xn)Lx0 .

Let G be a quasigroup in which the above identity is satisfied, and suppose a ∈ G.

By [2, Corollary 2.2], there exist b1, . . . , bn ∈ G such that LaW (b1, . . . , bn) = 1G
and RaW

′(b1, . . . , bn) = 1G. Substituting x0 = xn+1 = a and xi = bi for 1 ≤
i ≤ n into (8), we deduce Ra = La. �

Proposition 3.2. Suppose a quasigroup G satisfies (7) and σ ∈ S
(1)
n . Then G is

a loop.

Proof: Fix a ∈ G. Since Ra is surjective, there exists e ∈ G such that Rae = a,

i.e. ea = a. By Proposition 3.1, G is commutative, so to show that e is a neutral

element it suffices to prove Le = 1G. Again, by commutativity we may rewrite

(7) as

(9) Lx0Lx1 · · ·Lxn
Lxn+1 = Lxn+1Lxσ(1)

· · ·Lxσ(n)
Lx0 .
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Now suppose b ∈ G, and select c ∈ G such that ca = b. For every i0,

1 ≤ i0 ≤ n, substitute

xi =

{

c, i = i0,

e, i 6= i0,

into (9) to obtain

Li0
e LcL

n−i0
e = Lσ−1(i0)

e LcL
n−σ−1(i0)
e .

Applying both sides to the element a, we deduce Li0
e (ca) = L

σ−1(i0)
e (ca), i.e.

L
i0−σ−1(i0)
e b = b. This equality holds for all i0, 1 ≤ i0 ≤ n, but is vacuous when

σ−1(i0) = i0.

Let I = {i0 : σ−1(i0) 6= i0} = {i0 : σ(i0) 6= i0}. Then, because σ ∈ S
(1)
n ,

m(σ) = gcd(i0 − σ−1(i0))i0∈I = gcd(σ(i0) − i0)i0∈I = 1, and so we conclude

Leb = b. Since b ∈ G was arbitrary, Le = 1G. �

Corollary 3.3. Suppose a quasigroup G satisfies (7) and σ ∈ S
(1)
n . Then G is

an abelian group.

Proof: By Proposition 3.1, G is commutative, and by Proposition 3.2 there

exists e ∈ G such that Le = Re = 1G. Substituting x1 = . . . = xn = e into (7)

we obtain Lx0Rxn+1 = Rxn+1Lx0 , which is precisely the associative law. �

In view of Lemma 2.1 we therefore have:

Corollary 3.4. Suppose a permutation σ is drawn randomly and uniformly

from Sn. Then with probability 1 − o(1), any quasigroup satisfying (7) is an

abelian group.

The referee has pointed out that Corollary 3.3 has a partial converse:

Proposition 3.5. Suppose σ ∈ Sn and r = gcd(m(σ), n + 1) ≥ 2. Then there

exists a nonassociative quasigroup in which (7) holds.

Proof: Suppose the prime factorization of r is 2e · pe11 · · · pess , where the pi are

distinct odd primes, and let Q = Z2e+2 ×Z
p
e1+1
1

×· · ·×Zpes+1
s

. Then Q, considered

as an abelian group, has an automorphism ϕ of order r. Define a quasigroup

structure “·” on Q by x · y = ϕ(x+ y). Then (Q, ·) is clearly commutative. If Q

were associative, then the identity x ·(y ·z) = (x ·y) ·z would imply ϕ(x)+ϕ2(y)+

ϕ2(z) = ϕ2(x) + ϕ2(y) + ϕ(z), i.e. ϕ(x − z) = ϕ2(x − z), forcing ϕ = 1Q. Thus,

Q is not associative. In view of commutativity, the identity (7) reads

(10) Lx0Lx1 · · ·Lxn
Lxn+1 = Lxn+1Lxσ(1)

· · ·Lxσ(n)
Lx0 .
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In (Q, ·), the left hand side of (10) applied to an indeterminate y reads

(11) ϕ(x0) +

n
∑

i=1

ϕi+1(xi) + ϕn+2(xn+1) + ϕn+2(y)

while the right hand side reads

(12) ϕ(xn+1) +

n
∑

i=1

ϕi+1(xσ(i)) + ϕn+2(x0) + ϕn+2(y).

From the definition, we see that r divides σ(i)− i for i, 1 ≤ i ≤ n. Therefore,

if j = σ(i), then ϕj+1(xj) = ϕσ(i)+1(xσ(i)) = ϕi+1(xσ(i)). Moreover, since r

divides n+ 1, we have ϕn+1 = 1Q, so

ϕ(x0) +
n
∑

i=1

ϕi+1(xi) + ϕn+2(xn+1) + ϕn+2(y)

= ϕn+2(x0) +

n
∑

i=1

ϕi+1(xσ(i)) + ϕ(xn+1) + ϕn+2(y).

Thus (10) and hence also (7) holds in (Q, ·). �
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this paper.
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