Previous |  Up |  Next

Article

Keywords:
Choquet integral; Bessel capacity; Hardy-Littlewood maximal function
Summary:
We characterize the Choquet integrals associated to Bessel capacities in terms of the preduals of the Sobolev multiplier spaces. We make use of the boundedness of local Hardy-Littlewood maximal function on the preduals of the Sobolev multiplier spaces and the minimax theorem as the main tools for the characterizations.
References:
[1] Adams, D. R.: Quasi-additivity and sets of finite $L^p$-capacity. Pac. J. Math. 79 (1978), 283-291. DOI 10.2140/pjm.1978.79.283 | MR 0531319 | Zbl 0399.31006
[2] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1996). DOI 10.1007/978-3-662-03282-4 | MR 1411441 | Zbl 0834.46021
[3] Dinculeanu, N.: Integration on Locally Compact Spaces. Monographs and Textbooks on Pure and Applied Mathematics. Noordhoff International Publishing, Leiden (1974). MR 0360981 | Zbl 0284.28003
[4] Grigor'yan, A., Verbitsky, I.: Pointwise estimates of solutions to nonlinear equations for nonlocal operators. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 20 (2020), 721-750. DOI 10.2422/2036-2145.201802_011 | MR 4105916 | Zbl 07328846
[5] Kalton, N. J., Verbitsky, I. E.: Nonlinear equations and weighted norm inequalities. Trans. Am. Math. Soc. 351 (1999), 3441-3497. DOI 10.1090/S0002-9947-99-02215-1 | MR 1475688 | Zbl 0948.35044
[6] Maz'ya, V. G.: Sobolev Spaces: With Applications To Elliptic Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften 342. Springer, Berlin (2011). DOI 10.1007/978-3-642-15564-2 | MR 2777530 | Zbl 1217.46002
[7] Maz'ya, V. G., Shaposhnikova, T. O.: Theory of Sobolev Multipliers: With Applications To Differential and Integral Operators. Grundlehren der Mathematischen Wissenschaften 337. Springer, Berlin (2009). DOI 10.1007/978-3-540-69492-2 | MR 2457601 | Zbl 1157.46001
[8] Maz'ya, V. G., Verbitsky, I. E.: Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers. Ark. Mat. 33 (1995), 81-115. DOI 10.1007/BF02559606 | MR 1340271 | Zbl 0834.31006
[9] Ooi, K. H., Phuc, N. C.: Characterizations of predual spaces to a class of Sobolev multiplier type spaces. Available at https://arxiv.org/abs/2005.04349 (2020), 46 pages. MR 4360359
[10] Ooi, K. H., Phuc, N. C.: On a capacitary strong type inequality and related capacitary estimates. Available at https://arxiv.org/abs/2009.09291v1 (2020), 12 pages. MR 4404777
Partner of
EuDML logo