Article
Keywords:
univariate trigonometric polynomial; multivariate trigonometric polynomial; multivariate algebraic polynomial; Bernstein inequality; $L_{p}$-norm
Summary:
Let ${\mathbb T}_n$ be the space of all trigonometric polynomials of degree not greater than $n$ with complex coefficients. Arestov extended the result of Bernstein and others and proved that $ \| (1/n) T'_n \|_{p} \leq \| T_n \|_{p}$ for $0 \leq p \leq \infty $ and $T_n \in {\mathbb T}_n$. We derive the multivariate version of the result of Golitschek and Lorentz $$ \Bigl \| \Bigl | T_n \cos \alpha + \frac {1}{n} \nabla T_n \sin \alpha \Bigr |_{l_{\infty }^{(m)}} \Bigr \|_{p} \leq \| T_n \|_{p}, \quad 0 \leq p \leq \infty $$ for all trigonometric polynomials (with complex coeffcients) in $m$ variables of degree at most $n$.
References:
[4] Rahman, Q. I., Schmeisser, G.:
Les inégalités de Markoff et de Bernstein. Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics] 86. Les Presses de l'Université de Montréal, Montréal (1983), French.
MR 0729316 |
Zbl 0525.30001