Previous |  Up |  Next

Article

Keywords:
univariate trigonometric polynomial; multivariate trigonometric polynomial; multivariate algebraic polynomial; Bernstein inequality; $L_{p}$-norm
Summary:
Let ${\mathbb T}_n$ be the space of all trigonometric polynomials of degree not greater than $n$ with complex coefficients. Arestov extended the result of Bernstein and others and proved that $ \| (1/n) T'_n \|_{p} \leq \| T_n \|_{p}$ for $0 \leq p \leq \infty $ and $T_n \in {\mathbb T}_n$. We derive the multivariate version of the result of Golitschek and Lorentz $$ \Bigl \| \Bigl | T_n \cos \alpha + \frac {1}{n} \nabla T_n \sin \alpha \Bigr |_{l_{\infty }^{(m)}} \Bigr \|_{p} \leq \| T_n \|_{p}, \quad 0 \leq p \leq \infty $$ for all trigonometric polynomials (with complex coeffcients) in $m$ variables of degree at most $n$.
References:
[1] Arestov, V. V.: On integral inequalities for trigonometric polynomials and their derivatives. Math. USSR, Izv. 18 (1982), 1-18 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 45 1981 3-22. DOI 10.1070/IM1982v018n01ABEH001375 | MR 607574 | Zbl 0538.42001
[2] Conway, J. B.: Functions of One Complex Variable II. Graduate Texts in Mathematics 159. Springer, New York (1995). DOI 10.1007/978-1-4612-0817-4 | MR 1344449 | Zbl 0887.30003
[3] Golitschek, M. V., Lorentz, G. G.: Bernstein inequalities in $L_p$, $0 \leq p \leq \infty$. Rocky Mt. J. Math. 19 (1989), 145-156. DOI 10.1216/RMJ-1989-19-1-145 | MR 1016168 | Zbl 0738.42003
[4] Rahman, Q. I., Schmeisser, G.: Les inégalités de Markoff et de Bernstein. Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics] 86. Les Presses de l'Université de Montréal, Montréal (1983), French. MR 0729316 | Zbl 0525.30001
[5] Tung, S. H.: Bernstein's theorem for the polydisc. Proc. Am. Math. Soc. 85 (1982), 73-76. DOI 10.1090/S0002-9939-1982-0647901-6 | MR 647901 | Zbl 0502.32004
[6] Zygmund, A.: A remark on conjugate series. Proc. Lond. Math. Soc., II. Ser. 34 (1932), 392-400. DOI 10.1112/plms/s2-34.1.392 | MR 1576159 | Zbl 0005.35301
Partner of
EuDML logo