Previous |  Up |  Next

Article

Keywords:
Einstein metric; non-naturally reductive metric; compact Lie group; symplectic group
Summary:
We prove that there are at least two new non-naturally reductive ${\rm Ad}({\rm Sp}(l)\times {\rm Sp}(k)\times {\rm Sp}(k)\times {\rm Sp}(k))$ invariant Einstein metrics on ${\rm Sp} (l+3k)$ $(k < l)$. It implies that every compact simple Lie group ${\rm Sp} (n)$ for $n= l+3k>4$ admits at least $2[\tfrac 14 (n-1)]$ non-naturally reductive ${\rm Ad}({\rm Sp}(l)\times {\rm Sp}(k)\times {\rm Sp}(k)\times {\rm Sp}(k))$ invariant Einstein metrics.
References:
[1] Arvanitoyeorgos, A., Dzhepko, V. V., Nikonorov, Y. G.: Invariant Einstein metrics on some homogeneous spaces of classical Lie groups. Can. J. Math. 61 (2009), 1201-1213. DOI 10.4153/CJM-2009-056-2 | MR 2588419 | Zbl 1183.53037
[2] Arvanitoyeorgos, A., Mori, K., Sakane, Y.: Einstein metrics on compact Lie groups which are not naturally reductive. Geom. Dedicate 160 (2012), 261-285. DOI 10.1007/s10711-011-9681-1 | MR 2970054 | Zbl 1253.53043
[3] Arvanitoyeorgos, A., Sakane, Y., Statha, M.: Einstein metrics on the symplectic group which are not naturally reductive. Current Developments in Differential Geometry and its Related Fields World Scientific, Hackensack (2016), 1-22. DOI 10.1142/9789814719780_0001 | MR 3494871 | Zbl 1333.53053
[4] Besse, A. L.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Springer, Berlin (1987). DOI 10.1007/978-3-540-74311-8 | MR 0867684 | Zbl 0613.53001
[5] Chen, H., Chen, Z., Deng, S.: New non-naturally reductive Einstein metrics on exceptional simple Lie groups. J. Geom. Phys. 124 (2018), 268-285. DOI 10.1016/j.geomphys.2017.09.011 | MR 3754514 | Zbl 1386.53053
[6] Chen, H., Chen, Z., Deng, S.: Non-naturally reductive Einstein metrics on SO$(n)$. Manuscr. Math. 156 (2018), 127-136. DOI 10.1007/s00229-017-0954-3 | MR 3783569 | Zbl 1390.53040
[7] Chen, Z., Chen, H.: Non-naturally reductive Einstein metrics on Sp$(n)$. Front. Math. China 15 (2020), 47-55. DOI 10.1007/s11464-020-0818-0 | MR 4074344 | Zbl 1447.53045
[8] Chen, Z., Liang, K.: Non-naturally reductive Einstein metrics on the compact simple Lie group $F_4$. Ann. Global Anal. Geom. 46 (2014), 103-115. DOI 10.1007/s10455-014-9413-5 | MR 3239276 | Zbl 1301.53042
[9] Chrysikos, I., Sakane, Y.: Non-naturally reductive Einstein metrics on exceptional Lie groups. J. Geom. Phys. 116 (2017), 152-186. DOI 10.1016/j.geomphys.2017.01.030 | MR 3623653 | Zbl 1390.53041
[10] D'Atri, J. E., Ziller, W.: Naturally reductive metrics and Einstein metrics on compact Lie groups. Mem. Am. Math. Soc. 215 (1979), 72 pages. DOI 10.1090/memo/0215 | MR 0519928 | Zbl 0404.53044
[11] Mori, K.: Invariant Einstein Metrics on $SU(n)$ That Are Not Naturally Reductive: Master Thesis. Osaka University, Osaka (1994). English Translation: Osaka University RPM 96010 (preprint series), 1996 Japanese.
[12] Park, J.-S., Sakane, Y.: Invariant Einstein metrics on certain homogeneous spaces. Tokyo J. Math. 20 (1997), 51-61. DOI 10.3836/tjm/1270042398 | MR 1451858 | Zbl 0884.53039
[13] Wang, M.: Einstein metrics from symmetry and bundle constructions. Surveys in Differential Geometry: Essays on Einstein Manifolds. Surv. Differ. Geom. VI International Press, Boston (1999), 287-325. DOI 10.4310/SDG.2001.v6.n1.a11 | MR 1798614 | Zbl 1003.53037
[14] Wang, M.: Einstein metrics from symmetry and bundle constructions: A sequel. Differential Geometry: Under the Influence of S.-S. Chern Advanced Lectures in Mathematics 22. Higher Education Press/International Press, Somerville (2012), 253-309. MR 3076055 | Zbl 1262.53044
[15] Wang, M., Ziller, W.: Existence and non-existence of homogeneous Einstein metrics. Invent. Math. 84 (1986), 177-194. DOI 10.1007/BF01388738 | MR 0830044 | Zbl 0596.53040
[16] Yan, Z., Deng, S.: Einstein metrics on compact simple Lie groups attached to standard triples. Trans. Am. Math. Soc. 369 (2017), 8587-8605. DOI 10.1090/tran/7025 | MR 3710636 | Zbl 1433.53079
[17] Zhang, S., Chen, H., Deng, S.: New non-naturally reductive Einstein metrics on Sp$(n)$. Acta Math. Sci., Ser. B, Engl. Ed. 41 (2021), 887-898. DOI 10.1007/s10473-021-0315-x | MR 4245438
Partner of
EuDML logo