Summary: Let $$ T(q)=\sum _{k=1}^\infty d(k) q^k, \quad |q|<1, $$ where $d(k)$ denotes the number of positive divisors of the natural number $k$. We present monotonicity properties of functions defined in terms of $T$. More specifically, we prove that $$ H(q) = T(q)- \frac {\log (1-q)}{\log (q)} $$ is strictly increasing on $ (0,1)$, while $$ F(q) = \frac {1-q}{q} H(q) $$ is strictly decreasing on $(0,1)$. These results are then applied to obtain various inequalities, one of which states that the double inequality $$ \alpha \frac {q}{1-q}+\frac {\log (1-q)}{\log (q)} < T(q)< \beta \frac {q}{1-q}+\frac {\log (1-q)}{\log (q)}, \quad 0<q<1, $$ holds with the best possible constant factors $\alpha =\gamma $ and $\beta =1$. Here, $\gamma $ denotes Euler's constant. This refines a result of Salem, who proved the inequalities with $\alpha =\frac 12$ and $\beta =1$.
[7] Krattenthaler, C., Srivastava, H. M.: Summations for basic hypergeometric series involving a $q$-analogue of the digamma function. Comput. Math. Appl. 32 (1996), 73-91. DOI 10.1016/0898-1221(96)00114-9 | MR 1398550 | Zbl 0855.33012
[8] Landau, E.: Sur la série des inverses des nombres de Fibonacci. Bull. Soc. Math. Fr. 27 (1899), 298-300 French \99999JFM99999 30.0248.02.
[10] Merca, M.: Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer. J. Number Theory 160 (2016), 60-75. DOI 10.1016/j.jnt.2015.08.014 | MR 3425199 | Zbl 1396.11123
[11] Mitrinović, D. S., Sándor, J., Crstici, B.: Handbook of Number Theory. Mathematics and its Applications (Dordrecht) 351. Kluwer, Dordrecht (1995). DOI 10.1007/1-4020-3658-2 | MR 1374329 | Zbl 0862.11001
[12] Pólya, G., Szegő, G.: Aufgaben und Lehrsätze aus der Analysis II. Funktionentheorie, Nullstellen, Polynome, Determinanten, Zahlentheorie. Springer, Berlin (1971), German. DOI 10.1007/978-3-662-00061-8 | MR 0344041 | Zbl 0219.00003
[16] Salem, A., Alzahrani, F.: Complete monotonicity property for two functions related to the $q$-digamma function. J. Math. Inequal. 13 (2019), 37-52. DOI 10.7153/jmi-2019-13-03 | MR 3928268 | Zbl 1416.33023