Article
Keywords:
leaf; diameter; tree; spider
Summary:
Let $L(n,d)$ denote the minimum possible number of leaves in a tree of order $n$ and diameter $d.$ Lesniak (1975) gave the lower bound $B(n,d)=\lceil 2(n-1)/d\rceil $ for $L(n,d).$ When $d$ is even, $B(n,d)=L(n,d).$ But when $d$ is odd, $B(n,d)$ is smaller than $L(n,d)$ in general. For example, $B(21,3)=14$ while $L(21,3)=19.$ In this note, we determine $L(n,d)$ using new ideas. We also consider the converse problem and determine the minimum possible diameter of a tree with given order and number of leaves.