Previous |  Up |  Next

Article

Keywords:
degenerate elliptic problem; existence; uniqueness; weak solution; weighted Sobolev space
Summary:
In the present paper, we prove the existence and uniqueness of weak solution to a class of nonlinear degenerate elliptic $p$-Laplacian problem with Dirichlet-type boundary condition, the main tool used here is the variational method combined with the theory of weighted Sobolev spaces.
References:
[1] Abassi, A., Hachimi, A. El, Jamea, A.: Entropy solutions to nonlinear Neumann problems with $L^1$-data. Int. J. Math. Stat. 2 (2008), 4-17. MR 2348474 | Zbl 1137.35033
[2] Cavalheiro, A. C.: Weighted Sobolev spaces and degenerate elliptic equations. Bol. Soc. Parana. Mat. (3) 26 (2008), 117-132. DOI 10.5269/bspm.v26i1-2.7415 | MR 2505460 | Zbl 1185.46024
[3] Cavalheiro, A. C.: Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems. J. Appl. Anal. 19 (2013), 41-54. DOI 10.1515/jaa-2013-0003 | MR 3069764 | Zbl 1278.35086
[4] Cavalheiro, A. C.: Existence results for Dirichlet problems with degenerated $p$-Laplacian and $p$-biharmonic operators. Appl. Math. E-Notes 13 (2013), 234-242. MR 3159293 | Zbl 1291.35053
[5] Cavalheiro, A. C.: Existence and uniqueness of solutions for Dirichlet problems with degenerate nonlinear elliptic operators. Differ. Equ. Dyn. Syst. 24 (2016), 305-317. DOI 10.1007/s12591-014-0214-x | MR 3515045 | Zbl 1361.35065
[6] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006), 1383-1406. DOI 10.1137/050624522 | MR 2246061 | Zbl 1102.49010
[7] Diaz, J. I., Thelin, F. De: On a nonlinear parabolic problem arising in some models related to turbulent flows. SIAM J. Math. Anal. 25 (1994), 1085-1111. DOI 10.1137/S0036141091217731 | MR 1278892 | Zbl 0808.35066
[8] Drábek, P.: The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems. Math. Bohem. 120 (1995), 169-195. DOI 10.21136/MB.1995.126227 | MR 1357600 | Zbl 0839.35049
[9] Drábek, P., Kufner, A., Mustonen, V.: Pseudo-monotonicity and degenerated or singular elliptic operators. Bull. Aust. Math. Soc. 58 (1998), 213-221. DOI 10.1017/S0004972700032184 | MR 1642031 | Zbl 0913.35051
[10] Hästö, P. A.: The $p(x)$-Laplacian and applications. J. Anal. 15 (2007), 53-62. MR 2554092 | Zbl 1185.46020
[11] Kilpeläinen, J. Heinonen,T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs. Clarendon Press, Oxford (1993). MR 1207810 | Zbl 0780.31001
[12] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Paris (1969), French. MR 0259693 | Zbl 0189.40603
[13] užička, M. R\accent23: Electrorheological Fluids: Modeling and Mathematical Theory. Lectures Notes in Mathematics 1748. Springer, Berlin (2000). DOI 10.1007/BFb0104029 | MR 1810360 | Zbl 0962.76001
[14] Turesson, B. O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics 1736. Springer, Berlin (2000). DOI 10.1007/BFb0103908 | MR 1774162 | Zbl 0949.31006
Partner of
EuDML logo