Previous |  Up |  Next

Article

Keywords:
Heisenberg group; singular Borel measure; $L^{p}$-improving property
Summary:
Let $\mu _A$ be the singular measure on the Heisenberg group $\mathbb {H}^{n}$ supported on the graph of the quadratic function $\varphi (y) = y^{t}Ay$, where $A$ is a $2n \times 2n$ real symmetric matrix. If $\det (2A \pm J) \neq 0$, we prove that the operator of convolution by $\mu _A$ on the right is bounded from $L^{\frac {(2n+2)}{(2n+1)}}(\mathbb {H}^{n})$ to $L^{2n+2}(\mathbb {H}^{n})$. We also study the type set of the measures ${\rm d}\nu _{\gamma }(y,s) = \eta (y) |y|^{-\gamma } {\rm d}\mu _{A}(y,s)$, for $0 \leq \gamma < 2n$, where $\eta $ is a cut-off function around the origin on $\mathbb {R}^{2n}$. Moreover, for $\gamma =0$ we characterize the type set of $\nu _{0}$.
References:
[1] Carmo, M. P. do: Riemannian Geometry. Mathematics: Theory & Applications. Birkhäuser, Boston (1992). DOI 10.1007/978-1-4757-2201-7 | MR 1138207 | Zbl 0752.53001
[2] Gel'fand, I. M., Shilov, G. E.: Generalized Functions. Vol. I. Properties and Operations. Academic Press, New York (1964). DOI 10.1090/chel/377 | MR 0166596 | Zbl 0115.33101
[3] Godoy, T., Rocha, P.: $L^p-L^q$ estimates for some convolution operators with singular measures on the Heisenberg group. Colloq. Math. 132 (2013), 101-111. DOI 10.4064/cm132-1-8 | MR 3106091 | Zbl 1277.43013
[4] Godoy, T., Rocha, P.: Convolution operators with singular measures of fractional type on the Heisenberg group. Stud. Math. 245 (2019), 213-228. DOI 10.4064/sm8781-12-2017 | MR 3865682 | Zbl 1412.43009
[5] Littman, W.: $L^p-L^q$ estimates for singular integral operators arising from hyperbolic equations. Partial Differential Equations Proceedings of Symposia in Pure Mathematics 23. American Mathematical Society, Providence (1973), 479-481. DOI 10.1090/pspum/023/9948 | MR 0358443 | Zbl 0263.44006
[6] Oberlin, D. M.: Convolution estimates for some measures on curves. Proc. Am. Math. Soc. 99 (1987), 56-60. DOI 10.1090/S0002-9939-1987-0866429-6 | MR 866429 | Zbl 0613.43002
[7] Pan, Y.: A remark on convolution with measures supported on curves. Can. Math. Bull. 36 (1993), 245-250. DOI 10.4153/CMB-1993-035-2 | MR 1222541 | Zbl 0820.43002
[8] Ricci, F.: $L^p-L^q$ boundedness of convolution operators defined by singular measures in $\mathbb R^n$. Boll. Unione Mat. Ital., VII. Ser., A 11 (1997), 237-252 Italian. MR 1477777 | Zbl 0946.42006
[9] Ricci, F., Stein, E. M.: Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds. J. Funct. Anal. 86 (1989), 360-389. DOI 10.1016/0022-1236(89)90057-8 | MR 1021141 | Zbl 0684.22006
[10] Secco, S.: $L^p$-improving properties of measures supported on curves on the Heisenberg group. Stud. Math. 132 (1999), 179-201. DOI 10.4064/sm-132-2-179-201 | MR 1669682 | Zbl 0960.43009
[11] Secco, S.: $L^p$-improving properties of measures supported on curves on the Heisenberg group. II. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 5 (2002), 527-543. MR 1911204 | Zbl 1113.42012
[12] Stein, E. M., Shakarchi, R.: Complex Analysis. Princeton Lectures in Analysis 2. Princeton University Press, Princeton (2003). MR 1976398 | Zbl 1020.30001
[13] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series. Princeton University Press, Princeton (1971). DOI 10.1515/9781400883899 | MR 0304972 | Zbl 0232.42007
Partner of
EuDML logo