[4] Baek, H.:
Extinction and permanence of a three-species Lotka-Volterra system with impulsive control strategies. Discrete Dyn. Nat. Soc. 2008 (2008), Article ID 752403, 18 pages.
DOI 10.1155/2008/752403 |
MR 2452458 |
Zbl 1167.34350
[6] Bai, C.:
Solvability of multi-point boundary value problem of nonlinear impulsive fractional differential equation at resonance. Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Article ID 89, 19 pages.
DOI 10.14232/ejqtde.2011.1.89 |
MR 2854028 |
Zbl 1340.34007
[10] Bonanno, G., Bisci, G. Molica:
Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl. 2009 (2009), Article ID 670675, 20 pages.
DOI 10.1155/2009/670675 |
MR 2487254 |
Zbl 1177.34038
[13] Chen, J., Tang, X. H.:
Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory. Abstr. Appl. Anal. 2012 (2012), Article ID 648635, 21 pages.
DOI 10.1155/2012/648635 |
MR 2872321 |
Zbl 1235.34011
[15] Diethelm, K.:
The Analysis of Fractional Differential Equation: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics 2004. Springer, Berlin (2010).
DOI 10.1007/978-3-642-14574-2 |
MR 2680847 |
Zbl 1215.34001
[19] Gao, Z., Yang, L., Liu, G.:
Existence and uniqueness of solutions to impulsive fractional integro-differential equations with nonlocal conditions. Appl. Math., Irvine 4 (2013), 859-863.
DOI 10.4236/am.2013.46118
[22] Heidarkhani, S.:
Multiple solutions for a nonlinear perturbed fractional boundary value problem. Dyn. Syst. Appl. 23 (2014), 317-331.
MR 3241882 |
Zbl 1321.34012
[23] Heidarkhani, S., Afrouzi, G. A., Ferrara, M., Caristi, G., Moradi, S.:
Existence results for impulsive damped vibration systems. Bull. Malays. Math. Sci. Soc. (2) 41 (2018), 1409-1428.
DOI 10.1007/s40840-016-0400-9 |
MR 3818425 |
Zbl 1401.34031
[24] Heidarkhani, S., Afrouzi, G. A., Moradi, S., Caristi, G., Ge, B.:
Existence of one weak solution for $p(x)$-biharmonic equations with Navier boundary conditions. Z. Angew. Math. Phys. 67 (2016), Article ID 73, 13 pages.
DOI 10.1007/s00033-016-0668-5 |
MR 3508996 |
Zbl 1353.35153
[25] Heidarkhani, S., Zhao, Y., Caristi, G., Afrouzi, G. A., Moradi, S.:
Infinitely many solutions for perturbed impulsive fractional differential systems. Appl. Anal. 96 (2017), 1401-1424.
DOI 10.1080/00036811.2016.1192147 |
MR 3633869 |
Zbl 1367.34007
[29] Kong, L.:
Existence of solutions to boundary value problems arising from the fractional advection dispersion equation. Electron. J. Differ. Equ. 2013 (2013), Article ID 106, 15 pages.
MR 3065059 |
Zbl 1291.34016
[32] Nieto, J. J., Uzal, J. M.:
Nonlinear second-order impulsive differential problems with dependence on the derivative via variational structure. J. Fixed Point Theory Appl. 22 (2020), Article ID 19, 13 pages.
DOI 10.1007/s11784-019-0754-3 |
MR 4050175 |
Zbl 1442.34057
[34] Rabinowitz, P. H.:
Minimax Methods in Critical Point Theory with Applications to Differential Equations. Regional Conference Series in Mathematics 65. American Mathematical Society, Providence (1986).
DOI 10.1090/cbms/065 |
MR 0845785 |
Zbl 0609.58002
[37] Wang, G., Ahmad, B., Zhang, L., Nieto, J. J.:
Comments on the concept of existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 401-403.
DOI 10.1016/j.cnsns.2013.04.003 |
MR 3111618 |
Zbl 07172418
[38] Wang, Y., Liu, Y., Cui, Y.:
Infinitely many solutions for impulsive fractional boundary value problem with $p$-Laplacian. Bound. Value Probl. 2018 (2018), Article ID 94, 16 pages.
DOI 10.1186/s13661-018-1012-0 |
MR 3814794