Article
Keywords:
arithmetic progression; character sum; exponent pair method; square-full number
Summary:
Let $a$ and $b\in \mathbb {N}$. Denote by $R_{a,b}$ the set of all integers $n>1$ whose canonical prime representation $n=p_1^{\alpha _1}p_2^{\alpha _2}\cdots p_r^{\alpha _r}$ has all exponents $\alpha _i$ $(1\leq i\leq r)$ being a multiple of $a$ or belonging to the arithmetic progression $at+b$, $t\in \mathbb {N}_0:=\mathbb {N}\cup \{0\}$. All integers in $R_{a,b}$ are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given.
References:
[4] Cohen, E.:
Arithmetical notes. II: An estimate of Erdős and Szekeres. Scripta Math. 26 (1963), 353-356.
MR 0162770 |
Zbl 0122.04901
[5] Erdős, P., Szekeres, S.: Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem. Acta Szeged 7 (1934), 95-102 German \99999JFM99999 60.0893.02.
[10] Srichan, T.:
Square-full and cube-full numbers in arithmetic progressions. Šiauliai Math. Semin. 8 (2013), 223-248.
MR 3265055 |
Zbl 1318.11120