Previous |  Up |  Next

Article

Keywords:
Euler totient function; generalized gcd; Jordan totient function; Klee's function
Summary:
Menon's identity is a classical identity involving gcd sums and the Euler totient function $\phi $. A natural generalization of $\phi $ is the Klee's function $\Phi _s$. We derive a Menon-type identity using Klee's function and a generalization of the gcd function. This identity generalizes an identity given by Y. Li and D. Kim (2017).
References:
[1] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York (1976). DOI 10.1007/978-1-4757-5579-4 | MR 0434929 | Zbl 0335.10001
[2] Cohen, E.: Some totient functions. Duke Math. J. 23 (1956), 515-522. DOI 10.1215/S0012-7094-56-02348-1 | MR 0082499 | Zbl 0073.02903
[3] Haukkanen, P.: Menon's identity with respect to a generalized divisibility relation. Aequationes Math. 70 (2005), 240-246. DOI 10.1007/s00010-005-2805-7 | MR 2192277 | Zbl 1207.11011
[4] Haukkanen, P., Tóth, L.: Menon-type identities again: A note on a paper by Li, Kim and Qiao. Publ. Math. 96 (2020), 487-502. DOI 10.5486/PMD.2020.8786 | MR 4108053 | Zbl 07254963
[5] Haukkanen, P., Wang, J.: A generalization of Menon's identity with respect to a set of polynomials. Port. Math. 53 (1996), 331-337. MR 1414871 | Zbl 0856.11006
[6] Jordan, C.: Traité des substitutions et des équations algébriques. Gauthier-Villars, Paris (1870), French \99999JFM99999 03.0042.02. MR 0091260
[7] Menon, P. Kesava: On the sum $\sum (a-1,n),[(a,n)=1]$. J. Indian Math. Soc., New Ser. 29 (1965), 155-163. MR 0190065 | Zbl 0144.27706
[8] Klee, V. L.: A generalization of Euler's $\varphi$-function. Am. Math. Mon. 55 (1948), 358-359. DOI 10.2307/2304963 | MR 0024917 | Zbl 0030.29504
[9] Li, Y., Kim, D.: A Menon-type identity with many tuples of group of units in residually finite Dedekind domains. J. Number Theory 175 (2017), 42-50. DOI 10.1016/j.jnt.2016.11.023 | MR 3608177 | Zbl 1407.11009
[10] Miguel, C.: A Menon-type identity in residually finite Dedekind domains. J. Number Theory 164 (2016), 43-51. DOI 10.1016/j.jnt.2015.12.018 | MR 3474377 | Zbl 1378.11014
[11] Rao, K. Nageswara: On certain arithmetical sums. Theory of Arithmetic Functions Lecture Notes in Mathematics 251. Springer, Berlin (1972), 181-192. DOI 10.1007/BFb0058793 | MR 0337737 | Zbl 0243.10008
[12] Ramaiah, V. Sita: Arithmetical sums in regular convolutions. J. Reine Angew. Math. 303/304 (1978), 265-283. DOI 10.1515/crll.1978.303-304.265 | MR 0514685 | Zbl 0391.10007
[13] Sivaramakrishnan, R.: Classical Theory of Arithmetic Functions. Pure and Applied Mathematics 126. Marcel Dekker, New York (1989). MR 0980259 | Zbl 0657.10001
[14] Sury, B.: Some number-theoretic identities from group actions. Rend. Circ. Mat. Palermo (2) 58 (2009), 99-108. DOI 10.1007/s12215-009-0010-6 | MR 2504989 | Zbl 1187.20015
[15] Tărnăuceanu, M.: A generalization of the Euler's totient function. Asian-Eur. J. Math. 8 (2015), Artile ID 1550087, 13 pages. DOI 10.1142/S1793557115500874 | MR 3424162 | Zbl 1336.20029
[16] Tóth, L.: Menon's identity and arithmetical sums representing functions of several variables. Rend. Semin. Mat., Univ. Politec. Torino 69 (2011), 97-110. MR 2884710 | Zbl 1235.11011
[17] Tóth, L.: Menon-type identities concerning Dirichlet characters. Int. J. Number Theory 14 (2018), 1047-1054. DOI 10.1142/S179304211850063X | MR 3801082 | Zbl 1421.11010
[18] Tóth, L.: Short proof and generalization of a Menon-type identity by Li, Hu and Kim. Taiwanese J. Math. 23 (2019), 557-561. DOI 10.11650/tjm/180904 | MR 3952239 | Zbl 1418.11012
[19] Zhao, X.-P., Cao, Z.-F.: Another generalization of Menon's identity. Int. J. Number Theory 13 (2017), 2373-2379. DOI 10.1142/S1793042117501299 | MR 3704366 | Zbl 1392.11004
Partner of
EuDML logo