Previous |  Up |  Next

Article

Keywords:
$n$-gr-coherent ring; Gorenstein $n$-FP-gr-injective module; Gorenstein $n$-gr-flat module; cover; (pre)envelope
Summary:
Let $R$ be a graded ring and $n\geq 1$ be an integer. We introduce and study the notions of Gorenstein $n$-FP-gr-injective and Gorenstein $n$-gr-flat modules by using the notion of special finitely presented graded modules. On $n$-gr-coherent rings, we investigate the relationships between Gorenstein $n$-FP-gr-injective and Gorenstein $n$-gr-flat modules. Among other results, we prove that any graded module in $R$-gr (or gr-$R$) admits a Gorenstein $n$-FP-gr-injective (or Gorenstein $n$-gr-flat) cover and preenvelope, respectively.
References:
[1] Adarbeh, K., Kabbaj, S.: Trivial extensions subject to semi-regularity and semi-coherence. Quaest. Math. 43 (2020), 45-54. DOI 10.2989/16073606.2018.1533900 | MR 4058586 | Zbl 1431.13013
[2] Anderson, D. D., Bennis, D., Fahid, B., Shaiea, A.: On $n$-trivial extensions of rings. Rocky Mt. J. Math. 47 (2017), 2439-2511. DOI 10.1216/RMJ-2017-47-8-2439 | MR 3760303 | Zbl 1390.13025
[3] Anderson, D. D., Winders, M.: Idealization of a module. J. Commun. Algebra 1 (2009), 3-56. DOI 10.1216/JCA-2009-1-1-3 | MR 2462381 | Zbl 1194.13002
[4] Hügel, L. Angeleri, Herbera, D., Trlifaj, J.: Tilting modules and Gorenstein rings. Forum Math. 18 (2006), 211-229. DOI 10.1515/FORUM.2006.013 | MR 2218418 | Zbl 1107.16010
[5] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein gr-flat modules. Commun. Algebra 26 (1998), 3195-3209. DOI 10.1080/00927879808826336 | MR 1641595 | Zbl 0912.16022
[6] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein gr-injective and gr-projective modules. Commun. Algebra 26 (1998), 225-240. DOI 10.1080/00927879808826128 | MR 1600686 | Zbl 0895.16020
[7] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Covers and envelopes over gr-Gorenstein rings. J. Algebra 215 (1999), 437-457. DOI 10.1006/jabr.1998.7722 | MR 1686200 | Zbl 0942.16049
[8] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: FP-gr-injective modules and gr-FC- rings. Algebra and Number Theory Lecture Notes in Pure and Applied Mathematics 208. Marcel Dekker, New York (2000), 1-11. DOI 10.1201/9780203903889.CH1 | MR 1724670 | Zbl 0963.16041
[9] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein gr-injective modules over graded isolated singularities. Commun. Algebra 28 (2000), 3197-3207. DOI 10.1080/00927870008827019 | MR 1765311 | Zbl 0998.16031
[10] Bravo, D., Pérez, M. A.: Finiteness conditions and cotorsion pairs. J. Pure Appl. Algebra 221 (2017), 1249-1267. DOI 10.1016/j.jpaa.2016.09.008 | MR 3599429 | Zbl 1362.18019
[11] Chen, J., Ding, N.: On $n$-coherent rings. Commun. Algebra 24 (1996), 3211-3216. DOI 10.1080/00927879608825742 | MR 1402554 | Zbl 0877.16010
[12] Costa, D. L.: Parameterizing families of non-Noetherian rings. Commun. Algebra 22 (1994), 3997-4011. DOI 10.1080/00927879408825061 | MR 1280104 | Zbl 0814.13010
[13] Dobbs, D. E., Kabbaj, S.-E., Mahdou, N.: $n$-coherent rings and modules. Commutative ring theory Lecture Notes in Pure and Applied Mathematics 185. Marcel Dekker, New York (1997), 269-281. MR 1422485 | Zbl 0947.13011
[14] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. DOI 10.1007/BF02572634 | MR 1363858 | Zbl 0845.16005
[15] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). DOI 10.1515/9783110803662 | MR 1753146 | Zbl 0952.13001
[16] Enochs, E. E., Jenda, O. M. G., Torrecillas, B.: Gorenstein flat modules. J. Nanjing Univ, Math. Biq. 10 (1993), 1-9. MR 1248299 | Zbl 0794.16001
[17] Fossum, R. M., Griffith, P. A., Reiten, I.: Trivial Extensions of Abelian Categories: Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lecture Notes in Mathematics 456. Springer, Berlin (1975). DOI 10.1007/BFb0065404 | MR 0389981 | Zbl 0303.18006
[18] Gao, Z., Peng, J.: $n$-strongly Gorenstein graded modules. Czech. Math. J. 69 (2019), 55-73. DOI 10.21136/CMJ.2018.0160-17 | MR 3923574 | Zbl 07088769
[19] Gao, Z., Wang, F.: Coherent rings and Gorenstein FP-injective modules. Commun. Algebra 40 (2012), 1669-1679. DOI 10.1080/00927872.2011.554473 | MR 2924475 | Zbl 1257.16004
[20] Rozas, J. R. García, Ramos, J. A. López, Torrecillas, B.: On the existence of flat covers in $R$-gr. Commun. Algebra 29 (2001), 3341-3349. DOI 10.1081/AGB-100105025 | MR 1849490 | Zbl 0992.16034
[21] Gillespie, J.: Model structures on modules over Ding-Chen rings. Homology Homotopy Appl. 12 (2010), 61-73. DOI 10.4310/HHA.2010.v12.n1.a6 | MR 2607410 | Zbl 1231.16005
[22] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. DOI 10.1016/j.jpaa.2003.11.007 | MR 2038564 | Zbl 1050.16003
[23] Holm, H., Jørgensen, P.: Cotorsion pairs induced by duality pairs. J. Commun. Algebra 1 (2009), 621-633. DOI 10.1216/JCA-2009-1-4-621 | MR 2575834 | Zbl 1184.13042
[24] Mahdou, N.: On Costa's conjecture. Commun. Algebra 29 (2001), 2775-2785. DOI 10.1081/AGB-4986 | MR 1848381 | Zbl 1016.13010
[25] Mao, L.: Ding-graded modules and Gorenstein gr-flat modules. Glasg. Math. J. 60 (2018), 339-360. DOI 10.1017/S0017089517000155 | MR 3784053 | Zbl 1444.16055
[26] Mao, L., Ding, N.: Gorenstein FP-injective and Gorenstein flat modules. J. Algebra Appl. 7 (2008), 491-506. DOI 10.1142/S0219498808002953 | MR 2442073 | Zbl 1165.16004
[27] Matlis, E.: Injective modules over Noetherian rings. Pac. J. Math. 8 (1958), 511-528. DOI 10.2140/pjm.1958.8.511 | MR 0099360 | Zbl 0084.26601
[28] Năstăsescu, C.: Some constructions over graded rings: Applications. J. Algebra 120 (1989), 119-138. DOI 10.1016/0021-8693(89)90192-0 | MR 0977864 | Zbl 0678.16001
[29] Năstăsescu, C., Oystaeyen, F. Van: Graded Ring Theory. North-Holland Mathematical Library 28. North-Holland, Amsterdam (1982). DOI 10.1016/s0924-6509(08)x7017-5 | MR 0676974 | Zbl 0494.16001
[30] Năstăsescu, C., Oystaeyen, F. Van: Methods of Graded Rings. Lecture Notes in Mathematics 1836. Springer, Berlin (2004). DOI 10.1007/b94904 | MR 2046303 | Zbl 1043.16017
[31] Roos, J.-E.: Finiteness conditions in commutative algebra and solution of a problem of Vasconcelos. Commutative Algebra London Mathematical Society Lectures Notes in Mathematics 72. Cambridge University Press, Cambridge (1981), 179-204. DOI 10.1017/CBO9781107325517.016 | MR 0693636 | Zbl 0516.13013
[32] Rotman, J. J.: An Introduction to Homological Algebra. Universitext. Springer, New York (2009). DOI 10.1007/b98977 | MR 2455920 | Zbl 1157.18001
[33] Xu, J.: Flat Covers of Modules. Lecture Notes in Mathematics 1634. Springer, Berlin (1996). DOI 10.1007/BFb0094173 | MR 1438789 | Zbl 0860.16002
[34] Yang, X., Liu, Z.: FP-gr-injective modules. Math. J. Okayama Univ. 53 (2011), 83-100. MR 2778885 | Zbl 1222.16029
[35] Zhao, T., Gao, Z., Huang, Z.: Relative FP-gr-injective and gr-flat modules. Int. J. Algebra Comput. 28 (2018), 959-977. DOI 10.1142/S021819671850042X | MR 3855003 | Zbl 1397.16006
Partner of
EuDML logo