Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles.
(English).Czechoslovak Mathematical Journal,
vol. 72
(2022),
issue 1,
pp. 111-124
Keywords: IC-planar graph; neighbor sum distinguishing list total coloring; Combinatorial Nullstellensatz; discharging method
Summary: Let $G=(V(G),E(G))$ be a simple graph and $E_{G}(v)$ denote the set of edges incident with a vertex $v$. A neighbor sum distinguishing (NSD) total coloring $\phi $ of $G$ is a proper total coloring of $G$ such that $\sum _{z\in E_{G}(u)\cup \{u\}}\phi (z)\neq \sum _{z\in E_{G}(v)\cup \{v\}}\phi (z)$ for each edge $uv\in E(G)$. Pilśniak and Woźniak asserted in 2015 that each graph with maximum degree $\Delta $ admits an NSD total $(\Delta +3)$-coloring. We prove that the list version of this conjecture holds for any IC-planar graph with $\Delta \geq 11$ but without $5$-cycles by applying the Combinatorial Nullstellensatz.
[8] Song, W., Duan, Y., Miao, L.: Neighbor sum distinguishing total coloring of triangle free IC-planar graphs. Acta Math. Sin., Engl. Ser. 36 (2020), 292-304. DOI 10.1007/s10114-020-9189-4 | MR 4072704 | Zbl 1439.05096
[9] Song, W., Miao, L., Duan, Y.: Neighbor sum distinguishing total choosability of IC-planar graphs. Discuss. Math., Graph Theory 40 (2020), 331-344. DOI 10.7151/dmgt.2145 | MR 4041985 | Zbl 1430.05023
[10] Wang, J., Cai, J., Qiu, B.: Neighbor sum distinguishing total choosability of planar graphs without adjacent triangles. Theor. Comput. Sci. 661 (2017), 1-7. DOI 10.1016/j.tcs.2016.11.003 | MR 3591208 | Zbl 1357.05027
[11] Yang, D., Sun, L., Yu, X., Wu, J., Zhou, S.: Neighbor sum distinguishing total chromatic number of planar graphs with maximum degree 10. Appl. Math. Comput. 314 (2017), 456-468. DOI 10.1016/j.amc.2017.06.002 | MR 3683886 | Zbl 1426.05051