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Abstract. Let G = (V (G), E(G)) be a simple graph and EG(v) denote the set of edges
incident with a vertex v. A neighbor sum distinguishing (NSD) total coloring ϕ of G is
a proper total coloring of G such that

∑

z∈EG(u)∪{u}

ϕ(z) 6=
∑

z∈EG(v)∪{v}

ϕ(z) for each edge

uv ∈ E(G). Piĺsniak and Woźniak asserted in 2015 that each graph with maximum degree ∆
admits an NSD total (∆+3)-coloring. We prove that the list version of this conjecture holds
for any IC-planar graph with ∆ > 11 but without 5-cycles by applying the Combinatorial
Nullstellensatz.

Keywords: IC-planar graph; neighbor sum distinguishing list total coloring; Combinato-
rial Nullstellensatz; discharging method

MSC 2020 : 05C10, 05C15

1. Introduction

We consider only simple graphs in this article. Any terms and notations not

defined here can be found in [3].

Let G = (V (G), E(G)) be a simple graph with vertex set V (G) and edge set E(G).

For a vertex u ∈ V (G), we use EG(u) to denote the set of edges incident with u.

Let dG(u) and NG(u) denote the degree and the neighborhood of u, respectively. We

use δ(G) and ∆ = ∆(G) to denote the minimum degree and the maximum degree

of G, respectively.

Assume that k is a positive integer and T (G) = V (G)∪E(G). We call a mapping

ϕ : T (G) → {1, 2, . . . , k} a neighbor sum distinguishing (for short NSD) total coloring

of G if ϕ satisfies the following conditions
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(i) ϕ(z1) 6= ϕ(z2) for any two adjacent or incident elements z1, z2 in T (G),

(ii)
∑

z∈EG(u)∪{u}

ϕ(z) 6=
∑

z∈EG(v)∪{v}

ϕ(z) for each edge uv ∈ E(G).

The NSD total chromatic number of G, denoted by χt
Σ(G), is the smallest integer k

such that G has an NSD k-total coloring. In 2015, Piĺsniak and Woźniak in [4] stated

an important conjecture about the NSD total coloring in the following.

Conjecture 1.1 ([4]). For any graph G, χt
Σ(G) 6 ∆(G) + 3.

Piĺsniak and Woźniak in [4] proved that Conjecture 1.1 holds for some special

graphs, such as complete graphs, bipartite graphs, cubic graphs and 2-degenerate

graphs with ∆(G) 6 3. Yang et al. in [11] proved that any planar graph G with

∆(G) > 10 satisfies this conjecture.

An IC-planar graph, put forward by Alberson in 2008 (see [1]), is a graph that can

be drawn in a plane so that each edge is crossed at most once and two pairs of crossing

edges share no common end vertex, i.e., two distinct crossings are independent.

There are also many results about IC-planar graphs which satisfy Conjecture 1.1,

such as every IC-planar graph with ∆(G) > 13 (see [6]), any triangle-free IC-planar

graph with∆(G) > 7 (see [8]) and each IC-planar graph with∆(G) > 10 but without

adjacent triangles, see [7].

A k-list total assignment of G is a mapping L that assigns to each member

z ∈ T (G) a set L(z) of k integers. Given a list total assignment L of G, a map-

ping ϕ is called an NSD total L-coloring of G if it satisfies the following conditions

(i) ϕ is an NSD total coloring of G,

(ii) ϕ(z) ∈ L(z) for each z ∈ T (G).

The smallest integer k such that G has an NSD total L-coloring for any k-list

total assignment L is called the NSD total choice number of G, denoted by chtΣ(G).

Clearly, χt
Σ(G) 6 chtΣ(G).

There are also many results about the list version of Conjecture 1.1.

Conjecture 1.2 ([4]). For any graph G, chtΣ(G) 6 ∆(G) + 3.

Obviously, Conjecture 1.2 implies Conjecture 1.1. Qu et al. in [5] proved that this

conjecture holds for any planar graph G with maximum degree ∆(G) > 13. Wang et

al. in [10] confirmed this conjecture for every planar graph G with maximum degree

∆(G) > 8 but without adjacent triangles. Song et al. in [9] discussed any IC-planar

graph G with maximum degree ∆(G) > 14 and obtained the following.

Theorem 1.3 ([9]). Let G be an IC-planar graph. Then

chtΣ(G) 6 max{∆(G) + 3, 17}.
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In this paper, we obtain the following result.

Theorem 1.4. Let G be an IC-planar graph without 5-cycles. Then

chtΣ(G) 6 max{∆(G) + 3, 14}.

2. Preliminaries

In this section, we introduce some notions and two lemmas to show our results.

An l-vertex (l+-vertex, l−-vertex) is a vertex of degree l (degree at least l, de-

gree at most l). We use nl
G(v) (n

l+

G (v), nl−

G (v)) to denote the number of l-vertices

(l+-vertices, l−-vertices) adjacent to v.

A t-cycle (t+-cycle, t−-cycle) is a cycle of length t (at least t, at most t). In

particular, a 3-cycle with vertex set {v1, v2, v3} is called a (dG(v1), dG(v2), dG(v3))-

cycle and is denoted by [v1v2v3] if dG(v1) 6 dG(v2) 6 dG(v3).

Lemma 2.1 ([2]). Suppose that F is an arbitrary field and P ∈ F[x1, . . . , xn]

with degree deg(P ) =
n
∑

k=1

ik, where each ik is a nonnegative integer number. If

the coefficient cP (x
i1
1 , . . . , xin

n ) of the monomial xi1
1 xi2

2 . . . xin
n in P is nonzero, and if

S1, . . . , Sn are subsets of F with |Sk| > ik, then there are s1 ∈ S1, . . . , sn ∈ Sn such

that P (s1, . . . , sn) 6= 0.

Let m > 2 be an integer number and S1, . . . , Sm be m finite sets of real numbers.

Define
m
∑

i=1

Si = {s1 + . . .+ sm : si ∈ Si, si 6= sj , ∀ i 6= j}.

Lemma 2.2 ([2]). Assume thatm > 2 is an integer number and S1, . . . , Sm arem

finite sets of real numbers, where |Si| = ni and n1 > . . . > nm. Define n′
1, . . . , n

′
m by

n′
1 = n1 and n′

i = min{n′
i−1 − 1, ni} for 2 6 i 6 m.

If n′
t > 0, then

∣

∣

∣

∣

m
∑

i=1

Si

∣

∣

∣

∣

>

m
∑

i=1

n′
i −

1

2
m(m+ 1) + 1.

113



3. Proof of Theorem 1.4

Suppose that G is a counterexample to Theorem 1.4 with E(G) being minimal.

Let k = max{∆(G) + 3, 14} and L be a k-list total assignment of G. By the min-

imality of G, any subgraph G′ of G has an NSD total L-coloring ϕ′ for any k-list

total assignment L. In the following, we will obtain an NSD total L-coloring ϕ of G

from ϕ′. Then this contradicts the assumption that G is a counterexample to The-

orem 1.4. Let m(u) =
∑

z∈EG(u)∪{u}

ϕ(z). In the coloring ϕ′, the definition of m′(u)

is the same as m(u). Not stated otherwise, ϕ(z) = ϕ′(z) for any z ∈ T (G) ∩ T (G′).

For any z ∈ T (G), let S(z) denote the set of the available colors for z.

Let v be a 4−-vertex. Since |S(v)| > k − 2dG(v) > 6 > dG(v) for any k-list total

assignment L if T (G) \ {v} has a total coloring ϕ′ satisfying the following conditions

(i) ϕ′(z1) 6= ϕ′(z2) for any adjacent or incident elements z1, z2 ∈ T (G) \ {v},

(ii)
∑

z∈EG(z1)∪{z1}

ϕ′(z) 6=
∑

z∈EG(z2)∪{z2}

ϕ′(z) for any two adjacent vertices z1, z2 ∈

V (G) \ {v},

(iii) ϕ′(z) ∈ L(z) for each z ∈ T (G) \ {v},

then there exists a color in L(v) to color v such that the resulting coloring ϕ obtained

from ϕ′ is an NSD total L-coloring of G, a contradiction. For simplicity, we will omit

the colors of all 4−-vertices in the following proof.

By Theorem 1.3, Claim 3.1 is immediate.

Claim 3.1. ∆(G) 6 13.

Claim 3.2. Let v be a 5−-vertex of G. Then n5−

G (v) = 0.

P r o o f. Suppose to the contrary that v has a neighbor v1 with dG(v1) 6 5.

Without loss of generality, set dG(v) = dG(v1) = 5. Let G′ = G− vv1 and ϕ′ be an

NSD total L-coloring of G′.

In order to obtain an NSD total L-coloring ϕ of G from ϕ′, we first erase the colors

of v and v1 from ϕ′. Then |S(v)| > 14−2(5−1) = 6, |S(vv1)| > 14−(5−1)−(5−1) = 6

and |S(v1)| > 14− 2(5− 1) = 6.

Set ϕ(v) = x1, ϕ(vv1) = x2, ϕ(v1) = x3 and ϕ(z) = ϕ′(z) for each z ∈

T (G′) \ {v, v1}. Let

P = P (x1, x2, x3)

=
∏

w∈NG(v)\{v1}

(m(v)−m′(w))

×
∏

w∈NG(v1)\{v}

(m(v1)−m′(w))(x1 − x2)(x1 − x3)(x2 − x3)(m(v) −m(v1)),
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wherem(v) = x1+x2+m′(v)−ϕ′(v) andm(v1) = x2+x3+m′(v1)−ϕ′(v1). Note that

deg(P ) = 12. By the definition of NSD total L-coloring if there is a vector (c1, c2, c3)

in (S(v), S(vv1), S(v1)) such that P (c1, c2, c3) 6= 0, then ϕ must be an NSD total

L-coloring of G. By Lemma 2.1, we only need to find a monomial P0 = xa1

1 xa2

2 xa3

3

in P such that cP (P0) 6= 0 and deg(P0) = deg(P ) with ai < 6.

Let P0 = x4
1x

4
2x

4
3. Then we have cP (P0) = 20 6= 0 via Mathematica. Thus, we can

obtain an NSD total L-coloring ϕ of G from ϕ′. It is a contradiction. �

Claim 3.3. Let v be an l-vertex of G with 6 6 l 6 7. Then n4−

G (v) 6 l − 6.

P r o o f. By contradiction, assume that v has l − 5 neighbors v1, . . . , vl−5 with

dG(vi) 6 4 for 1 6 i 6 l − 5. Let G′ = G − {vvi : 1 6 i 6 l − 5} and ϕ′ be an NSD

total L-coloring of G′.

In order to obtain an NSD total L-coloring ϕ of G from ϕ′, we first erase the colors

of v and vi (i = 1, . . . , l− 5) from ϕ′. Then |S(v)| > 14− 2(dG(v)− (l− 5)) = 4 and

|S(vvi)| > 14− (dG(v)− (l − 5))− (dG(vi)− 1) > 6 for 1 6 i 6 l− 5.

When l = 6, l − 5 = 1. By Lemma 2.2, we have that

|S(v) + S(vv1)| > 4 + 6−
1

2
· 2 · 3 + 1 = 8 > dG(v)− 1.

When l = 7, l − 5 = 2. By Lemma 2.2, we have that

|S(v) + S(vv1) + S(vv2)| > 4 + 5 + 6−
1

2
· 3 · 4 + 1 = 10 > dG(v)− 2.

Under each of the above two cases, we can always find a color in S(v) and a color

in S(vvi) (i = 1, . . . , l − 5) to color v and vvi, such that the resulting coloring ϕ

obtained from ϕ′ satisfies m(v) 6= m(z) for each z ∈ NG(v) \ {v1, . . . , vl−5}. Note

that vi (i = 1, . . . , l− 5) is a 4−-vertex of G. Therefore, we can obtain an NSD total

L-coloring ϕ of G from ϕ′, a contradiction. �

Claim 3.4. Let v be an l-vertex of G with 8 6 l 6 9. Then n3−

G (v) 6 l − 7.

Furthermore, n4−

G (v) 6 l − 7 when n3−

G (v) > 1.

P r o o f. Suppose to the contrary that v has l − 6 neighbors v1, . . . , vl−6 with

dG(v1) 6 3 and dG(vi) 6 4 for 2 6 i 6 l − 6. Let G′ = G − {vvi : 1 6 i 6 l − 6}

and ϕ′ be an NSD total L-coloring of G′.

In order to obtain an NSD total L-coloring ϕ of G from ϕ′, we first erase the colors

of v and vi (i = 1, . . . , l − 6) from ϕ′. Then |S(v)| > 14 − 2(dG(v) − (l − 6)) = 2,

|S(vv1)| > 14 − (dG(v) − (l − 6)) − (dG(v1) − 1) > 6 and |S(vvi)| > 14 − (dG(v) −

(l − 6))− (dG(vi)− 1) > 5 for 2 6 i 6 l − 6.
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When l = 8, l − 6 = 2. By Lemma 2.2, we have that

|S(v) + S(vv1) + S(vv2)| > 2 + 6 + 5−
1

2
· 3 · 4 + 1 = 8 > dG(v)− 2.

When l = 9, l − 6 = 3. By Lemma 2.2, we have that

|S(v) + S(vv1) + S(vv2) + S(vv3)| > 2 + 6 + 5 + 4−
1

2
· 4 · 5 + 1 = 8 > dG(v)− 3.

Under each of the above two cases, we can always find a color in S(v) and a color

in S(vvi) (i = 1, . . . , l − 6) to color v and vvi, such that the resulting coloring ϕ

obtained from ϕ′ satisfies m(v) 6= m(z) for each z ∈ NG(v) \ {v1, . . . , vl−6}. Note

that vi (i = 1, . . . , l− 6) is a 4−-vertex of G. Therefore, we can obtain an NSD total

L-coloring ϕ of G from ϕ′, a contradiction. �

Claim 3.5. Let v be a 10-vertex ofG. Then n3−

G (v) 6 4. Furthermore, n4−

G (v) 6 4

when n3−

G (v) > 1.

P r o o f. On the contrary, assume that v has five neighbors v1, . . . , v5 with

dG(v1) 6 3 and dG(vi) 6 4 for 2 6 i 6 5. Let G′ = G − {vvi : 1 6 i 6 5}

and ϕ′ be an NSD total L-coloring of G′.

In order to obtain an NSD total L-coloring ϕ of G from ϕ′, we first erase the

colors on v and vi (i = 1, . . . , 5) from ϕ′. Then |S(v)| > 14 − 2(10 − 5) = 4,

|S(vv1)| > 14 − (10 − 5) − (3 − 1) = 7 and |S(vvi)| > 14 − (10 − 5) − (4 − 1) = 6

(i = 2, . . . , 5).

Set ϕ(v) = x1, ϕ(vvi) = xi+1 (i = 1, . . . , 5) and ϕ(z) = ϕ′(z) for each z ∈

T (G′) \ {v, v1, . . . , v5}. Let

P = P (x1, . . . , x6) =
∏

16i<j66

(xi − xj)
∏

w∈NG(v)\{v1,...,v5}

(m(v)−m′(w)),

where m(v) =
6
∑

i=1

xi + m′(v) − ϕ′(v). Note that deg(P ) = 20. By the definition

of NSD total L-coloring if there is a vector (c1, . . . , c6) in (S(v), S(vv1), . . . , S(vv5)),

such that P (c1, . . . , c6) 6= 0, then ϕ must be an NSD total L-coloring of G. By

Lemma 2.1, we only need to find a monomial P0 = xa1

1 xa2

2 . . . xa6

6 in P such that

cP (P0) 6= 0 and deg(P0) = deg(P ) with a1 < 4, a2 < 7 and ai < 6 (i = 3, . . . , 6).

Let P0 = x3
1x

6
2x

4
3x

5
4x

2
5. Then we have cP (P0) = 1 6= 0 by applying Mathematica.

Thus, we can obtain an NSD total L-coloring ϕ of G from ϕ′. It is a contradiction.

�
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Claim 3.6. Let v be an l-vertex of G with 11 6 l 6 13. Then n2−

G (v) 6 ⌊ 3
7 l⌋.

Furthermore, n3−

G (v) 6 ⌊ 3
7 l⌋ when n2−

G (v) > 1, and n4−

G (v) 6 ⌊ 3
7 l⌋ when n2−

G (v) > 1

and n3−

G (v) > 2.

P r o o f. By contradiction, assume that v has ⌊ 3
7 l⌋ + 1 neighbors v1, . . . , v⌊ 3

7
l⌋+1

with dG(v1) 6 2, dG(v2) 6 3 and dG(vi) 6 4 for 3 6 i 6 ⌊ 3
7 l⌋ + 1. Let G′ =

G− {vvi : 1 6 i 6 ⌊ 3
7 l⌋+ 1} and ϕ′ be an NSD total L-coloring of G′.

In order to obtain an NSD total L-coloring ϕ of G from ϕ′, we first erase the colors

of v and vi (i = 1, . . . , ⌊ 3
7 l⌋+1) from ϕ′. Then |S(v)| > l+3−2(dG(v)−(⌊ 3

7 l⌋+1)) =

2⌊ 3
7 l⌋ + 5 − l, |S(vv1)| > l + 3 − (dG(v) − (⌊ 3

7 l⌋ + 1)) − (dG(v1) − 1) > ⌊ 3
7 l⌋ + 3,

|S(vv2)| > l + 3 − (dG(v) − (⌊ 3
7 l⌋ + 1)) − (dG(v2) − 1) > ⌊ 3

7 l⌋ + 2 and |S(vvi)| >

l + 3− (dG(v)− (⌊ 3
7 l⌋+ 1))− (dG(vi)− 1) > ⌊ 3

7 l⌋+ 1 for 3 6 i 6 ⌊ 3
7 l⌋+ 1.

For l = 11, we know that ⌊ 3
7 l⌋+ 1 = 5, |S(v)| > 2, |S(vv1)| > 7, |S(vv2)| > 6 and

|S(vvi)| > 5 for 3 6 i 6 5. By Lemma 2.2, we have that

|S(v) + S(vv1) + . . .+ S(vv5)| >

7
∑

i=2

i−
1

2
· 6 · 7 + 1 = 7 > dG(v) − 5.

For l = 12 or 13, we know that ⌊ 3
7 l⌋+1 = 6, |S(v)| > 2, |S(vv1)| > 8, |S(vv2)| > 7

and |S(vvi)| > 6 for 3 6 i 6 6. By Lemma 2.2, we have that

|S(v) + S(vv1) + . . .+ S(vv6)| >

8
∑

i=2

i−
1

2
· 7 · 8 + 1 = 8 > dG(v) − 6.

Under each of the above cases, we can always find a color in S(v) and a color

in S(vvi) (i = 1, . . . , ⌊ 3
7 l⌋+ 1) to color v and vvi such that the resulting coloring ϕ

obtained from ϕ′ satisfies m(v) 6= m(z) for each z ∈ NG(v) \ {v1, . . . , v⌊ 3
7
l⌋+1}. Note

that vi (i = 1, . . . , ⌊ 3
7 l⌋+ 1) is a 4−-vertex of G. Therefore, we can obtain an NSD

total L-coloring ϕ of G from ϕ′, a contradiction. �

We delete all 2−-vertices from G and obtain the resulting graphH . Then dH(v) =

dG(v) − n2−

G (v) for each v ∈ V (H). By Claims 3.2–3.6, the following Claims 3.7

and 3.8 are immediate.

Claim 3.7. For the resulting graph H , each of the following results holds.

(1) δ(H) > 3,

(2) dH(v) = dG(v) if 3 6 dG(v) 6 6,

(3) dH(v) > 6 if dG(v) > 7,

(4) n3
H(v) + n4

H(v) 6 l − 6 when dH(v) = l with 6 6 l 6 7,

(5) n3
H(v) 6 l − 6 when dH(v) = l with 8 6 l 6 10.
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Claim 3.8. Each 3-cycle in H is either a (3, 7+, 7+)-cycle or a (4, 7+, 7+)-cycle

or a (5+, 6+, 6+)-cycle.

For a planar graph, we call a face a t-face (or a t+-face, a t−-face, an (l1, l2, l3)-face)

if its boundary is a t-cycle (or a t+-cycle, a t−-cycle, an (l1, l2, l3)-cycle, respectively),

and use the boundary [v1v2v3] of a 3-face to represent the 3-face. A face is said to

be incident with the vertices and edges in its boundary.

In the following, we always consider that the IC-planar graph G has been em-

bedded into a plane such that every edge is crossed by at most one other edge and

the number of crossings is as small as possible. We turn all crossings of G into new

4-vertices on the plane and obtain a plane graph G× which is called the associated

plane graph of G. For a vertex v in G×, we call it false if v ∈ V (G×) \ V (G) and

real otherwise. For a face f in G×, f is called a false face if it is incident with a false

vertex and a real face otherwise. For convenience of discussion, a real l-vertex is still

called an l-vertex in the following.

Let H× be the associated plane graph of H . For a vertex v ∈ V (H), let

f(v) = the number of real 3-faces incident with v, and

ff(v) = the number of false 3-faces incident with v.

Note that each real vertex v is adjacent to at most a false 4-vertex and dH×(v) =

dH(v) in H×. Since G (and thus H) is an IC-planar graph without 5-cycles, we can

directly obtain Claim 3.9 as follows.

Claim 3.9. For each v ∈ V (H) with dH(v) > 4, each of the following results

holds.

(1) 0 6 ff(v) 6 2.

(2) When v is not adjacent to any false 4-vertex, f(v) 6 ⌊ 2
3dH× (v)⌋.

(3) When v is adjacent to a false 4-vertex and 0 6 ff(v) 6 1, f(v) 6 ⌊ 2
3dH×(v)⌋ if

dH×(v) ≡ 1 (mod 3) and f(v) 6 ⌊ 2
3dH× (v)⌋ − 1 otherwise.

(4) When v is adjacent to a false 4-vertex and ff(v) = 2, f(v) 6 ⌊ 2
3dH×(v)⌋ − 1 if

dH×(v) ≡ 1 (mod 3) and f(v) 6 ⌊ 2
3dH× (v)⌋ − 2 otherwise.

In the following, we are ready to apply the discharging method on the associated

plane graph H× to prove that H× (and thus H) does not exist. And so G does not

exist. For each z ∈ V (H×) ∪ F (H×), we assign it a weight ω(z) = dH×(z) − 4. By

Euler’s formula, we have

∑

z∈V (H×)∪F (H×)

ω(z) = −8.
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Next, we design some discharging rules to redistribute weights among vertices and

faces, and keep the total weights unchanged. Note that a real l-vertex is still called

an l-vertex. The discharging rules are as follows:

(R1) Suppose that f = [v1v2v3] is a real (l1, l2, l3)-face in H×.

(R1.1) When (l1, l2, l3) ∈ {(3, 7+, 7+), (4, 7+, 7+)}, f receives 1
2 from vi for i=2, 3.

(R1.2) When (l1, l2, l3) = (5+, 6+, 6+), f receives 1
3 from vi for i = 1, 2, 3.

(R2) Each 3-vertex receives 1
3 from each neighbor.

(R3) Each false 3-face receives 1 from its incident false 4-vertex.

(R4) Suppose that z is a false 4-vertex in H× and x a neighbor of z.

(R4.1) Let dH×(x) = 5. Then z receives 2
3 from x when ff(x) = 2 and 1

3 otherwise.

(R4.2) Let dH×(x) = 6. Then z receives 4
3 from x when ff(x) = 2 and 1 otherwise.

(R4.3) Let dH×(x) = 7. When ff(x) 6 1, z receives 1 from x. When ff(x) = 2,

z receives 4
3 from x if x is adjacent to an l-vertex with l 6 4 in H× and 5

3

otherwise.

(R4.4) Let dH×(x) > 8. Then z receives 11
6 from x when ff(x) = 2 and 4

3

otherwise.

After applying the discharging rules, denote by ω′(z) the new weight for each

z ∈ V (H×) ∪ F (H×). Since the total weights are not changed,

∑

z∈V (H×)∪F (H×)

ω′(z) =
∑

z∈V (H×)∪F (H×)

ω(z) = −8 < 0.

Thus, there is at least one element z0 ∈ V (H×) ∪ F (H×) satisfying

(3.1) ω′(z0) < 0.

In the following, we check the new weight ω′(z) for each z ∈ V (H×) ∪ F (H×) to

show that there is no z0 satisfying ω
′(z0) < 0, which is a contradiction to (3.1). Note

that a real l-vertex is still called an l-vertex.

Since each false 3-face z is incident with a false 4-vertex, ω′(z) = 3 − 4 + 1 = 0

by (R3). By Claim 3.8, we know that each real 3-face z is either a (3, 7+, 7+)-face

or a (4, 7+, 7+)-face or a (5+, 6+, 6+)-face. Thus, it is easy to verify that ω′(z) > 0

by (R1) when z is a real 3-face. If z is a 4+-face , then ω′(z) > 0 since no rule is

applied to it. Thus, z0 /∈ F (H×).

Next, we show that ω′(z) > 0 for each false 4-vertex z ∈ V (H×) \ V (H). Pick ar-

bitrarily a false 4-vertex z from V (H×)\V (H). Let NH×(z) = {v1, v2, v3, v4}. Then,

up to isomorphism, the configuration of the induced subgraph H×[{z} ∪NH×(z)] is

one of the six configurations in Figure 1. Note that z is incident with at most four

false 3-faces and adjacent to at most two l-vertices with l 6 4 by Claims 3.2 and 3.7.
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Figure 1. Six different configurations of H×[{z} ∪NH× (z)]

Case 1 : Suppose that z is not adjacent to any 3-vertex.

Subcase 1.1 : Let z be incident with at most two false 3-faces (see F1–F4 in Fig-

ure 1). Then ω′(z) > 4 − 2 + 2 · 1 = 0 by (R3)–(R4) since z is adjacent to at least

two 6+-vertices by Claims 3.2 and 3.7.

Subcase 1.2 : Let z be incident with three false 3-faces (see F5 in Figure 1). Note

that ff(vi) = 2 for i = 1, 4.

Subcase 1.2.1 : Assume that z is not adjacent to any 4-vertex in H×. Then z

is adjacent to at most two 5-vertices by Claims 3.2 and 3.7. If z is adjacent to

at most one 5-vertex, then other neighbors of z are all 6+-vertices. Thus, ω′(z) >

4− 3+ 1
3 +3 · 1 = 1

3 by (R3)–(R4). If z is adjacent to two 5-vertices, then it must be

dH×(v2) = dH×(v3) = 5 and dH×(vi) > 6 for i = 1, 4 by Claims 3.2 and 3.7. Thus,

ω′(z) > 4− 3 + 2 · 1
3 + 2 · 4

3 = 1
3 by (R3)–(R4).

Subcase 1.2.2 : Assume that z is adjacent to exactly one 4-vertex in H×. Then z

is adjacent to at most one 5-vertex by Claims 3.2 and 3.7. If z is not adjacent to

any 5-vertex, then z has three neighbors which are all 6+-vertices. Thus, ω′(z) >

4−3+3 ·1 = 0 by (R3)–(R4). If z is adjacent to exactly one 5-vertex, then it must be

dH×(v1) > 6 and dH× (v4) > 6 by Claims 3.2 and 3.7. Thus, ω′(z) > 4−3+ 1
3+2· 43 = 0

by (R3)–(R4).

Subcase 1.2.3 : Assume that z is adjacent to two 4-vertices in H×. Then it must

be dH×(v2) = dH× (v3) = 4 and dH× (vi) > 8 for i = 1, 4 by Claims 3.2 and 3.7.

Thus, ω′(z) > 4− 3 + 2 · 11
6 = 2

3 by (R3)–(R4).

Subcase 1.3 : Let z be incident with four false 3-faces (see F6 in Figure 1). Then z

has at least three neighbors which are 6+-vertices by Claims 3.2 and 3.7. Note that

ff(vi) = 2 for i = 1, 2, 3, 4. Thus, ω′(z) > 4− 4 + 3 · 4
3 = 0 by (R3)–(R4).

Case 2 : Suppose that z is adjacent to exactly one 3-vertex.

Subcase 2.1 : Let z be incident with at most one false 3-face (see F1 and F2 in

Figure 1). Then ω′(z) > 4− 1− 1
3 + 2 · 1 = 2

3 by (R2)–(R4) since z is adjacent to at

least two 6+-vertices by Claims 3.2 and 3.7.
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Subcase 2.2 : Let z be incident with two false 3-faces (see F3 and F4 in Figure 1).

Then z is adjacent to at most one 4-vertex by Claims 3.2 and 3.7.

Subcase 2.2.1 : Assume that the configuration of H×[{z} ∪NH×(z)] is F3 in Fig-

ure 1. If z is not adjacent to any 4-vertex, then z is adjacent to one 5+-vertex and

two 7+-vertices by Claims 3.2 and 3.7. Thus, ω′(z) > 4 − 2 − 1
3 + 2 · 1 + 1

3 = 0

by (R2)–(R4). If z is adjacent to one 4-vertex, then z is adjacent to two 8+-vertices

by Claims 3.2 and 3.7. Thus, ω′(z) > 4− 2− 1
3 + 2 · 4

3 = 1
3 by (R2)–(R4).

Subcase 2.2.2 : Assume that the configuration of H×[{z} ∪NH×(z)] is F4 in Fig-

ure 1. Note that ff(v1) = 2. If dH×(v1) = 3, then dH×(vi) > 7 for i = 2, 3, 4

by Claims 3.2 and 3.7. Thus, ω′(z) > 4 − 2 − 1
3 + 2 · 1 + 4

3 = 1 by (R2)–(R4).

If dH×(v2) = 3, then dH× (vi) > 7 for i = 1, 4 by Claims 3.2 and 3.7. Thus,

ω′(z) > 4 − 2 − 1
3 + 1 + 4

3 = 0 by (R2)–(R4). Similarly, we can obtain ω′(z) > 0

if dH×(v4) = 3. If dH×(v3) = 3, then dH×(v1) > 7 by Claims 3.2 and 3.7. If

dH×(v1) = 7, then dH×(vi) > 5 for i = 2, 4 and dH× (v2)+dH× (v4) > 11 by Claims 3.2

and 3.7. Thus, ω′(z) > 4 − 2 − 1
3 + 4

3 + 1 + 1
3 = 1

3 by (R2)–(R4). If dH× (v1) > 8,

then dH× (vi) > 4 for i = 2, 4 and dH× (v2) + dH×(v4) > 11 by Claims 3.2 and 3.7.

Thus, ω′(z) > 4− 2− 1
3 + 11

6 + 4
3 = 5

6 by (R2)–(R4).

Subcase 2.3 : Let z be incident with three false 3-faces (see F5 in Figure 1). Then z

is adjacent to at most one 4-vertex. Note that ff(vi) = 2 for i = 1, 4. If dH× (v1) = 3,

then dH× (vi) > 7 for i = 2, 3, 4 by Claims 3.2 and 3.7. Thus, ω′(z) > 4 − 3 − 1
3 +

2 · 1 + 4
3 = 0 by (R2)–(R4). Similarly, we can obtain ω′(z) > 0 if dH× (v4) = 3. If

dH×(v2)=3, then dH× (vi) > 7 for i = 1, 4 by Claims 3.2 and 3.7. When dH× (v4) = 7,

dH×(v3) > 5 and v4 is not adjacent to any l-vertex with 3 6 l 6 4 inH× by Claims 3.2

and 3.7. Thus, ω′(z) > 4− 3− 1
3 +

5
3 +

4
3 +

1
3 = 0 by (R2)–(R4). In the following, we

assume that dH×(v4) > 8. If dH×(v1) = 7, then dH× (v3) > 5 by Claims 3.2 and 3.7.

Thus, ω′(z) > 4−3− 1
3 +

11
6 + 4

3 +
1
3 = 1

6 by (R2)–(R4). If dH×(v1) > 8, then ω′(z) >

4−3− 1
3+2· 116 = 1

3 by (R2)–(R4). Similarly, we can obtain ω
′(z) > 0 if dH× (v3) = 3.

Subcase 2.4 : Let z be incident with four false 3-faces (see F6 in Figure 1). Note

that ff(vi) = 2 for i = 1, 2, 3, 4. If dH×(v1) = 3, then dH×(vi) > 7 for i = 2, 3, 4

by Claims 3.2 and 3.7. If dH×(v3) = 7, then v3 is not adjacent to any l-vertex with

3 6 l 6 4 in H× by Claims 3.2 and 3.7. Thus, ω′(z) > 4 − 4 − 1
3 + 5

3 + 2 · 4
3 = 0

by (R2)–(R4). If dH×(v3) > 8, then ω′(z) > 4− 4− 1
3 +

11
6 +2 · 43 = 1

6 by (R2)–(R4).

Similarly, we can obtain ω′(z) > 0 if dH×(v2) = 3 or dH×(v3) = 3 or dH×(v4) = 3.

Case 3 : Suppose that z is adjacent to two 3-vertices. Note that z is not incident

with four false 3-faces since each 3-vertex is not adjacent to any 3-vertex by Claims 3.2

and 3.7.

Subcase 3.1 : Let z be incident with at most one false 3-face (see F1 and F2 in

Figure 1). Then ω′(z) > 4− 1− 2 · 1
3 + 2 · 1 = 1

3 by (R2)–(R4) since z is adjacent to

two 7+-vertices by Claims 3.2 and 3.7.
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Subcase 3.2 : Let z be incident with two false 3-faces (see F3 and F4 in Figure 1).

Subcase 3.2.1 : Assume that the configuration of H×[{z} ∪ NH×(z)] is F3 in

Figure 1. Then z is adjacent to two 8+-vertices by Claims 3.2 and 3.7. Thus,

ω′(z) > 4− 2− 2 · 1
3 + 2 · 4

3 = 0 by (R2)–(R4).

Subcase 3.2.2 : Assume that the configuration of H×[{z} ∪NH×(z)] is F4 in Fig-

ure 1. Then dH×(v3) = 3 and dH×(v1) > 8 by Claims 3.2 and 3.7. Note that

ff(v1) = 2. Since one of v2 and v4 is a 3-vertex, the other of v2 and v4 is a 7
+-vertex

by Claims 3.2 and 3.7. Thus, ω′(z) > 4− 2− 2 · 1
3 + 1+ 11

6 = 1
6 by (R2)–(R4).

Subcase 3.3 : Let z be incident with three false 3-faces (see F5 in Figure 1). Then

dH×(v2) = dH×(v3) = 3 and dH×(vi) > 8 for i = 1, 4 by Claims 3.2 and 3.7. Note

that ff(vi) = 2 for i = 1, 4. Thus, ω′(z)>4− 3− 2 · 1
3 + 2 · 11

6 =0 by (R2)–(R4).

In summary, we know that z0 is not a false 4-vertex.

Finally, we prove that ω′(z) > 0 for each real vertex z ∈ V (H). Pick arbitrarily

a real vertex z from V (H). Note that each real vertex gives no weight to any false

face. Since δ(H) > 3 by Claim 3.7, δ(H×) > 3.

If z is a 3-vertex, then ω′(z) > 3− 4 + 3 · 1
3 = 0 by (R2).

If z is a 4-vertex, then ω′(z) > 4− 4 = 0 since no rule is applied to it.

In the following, we assume that z is a 5+-vertex. Note that n3
H×(z) 6 n3

H(z)

in H×.

Part 1 : Suppose that z is not adjacent to any false 4-vertex. Then f(z) 6

⌊ 2
3dH×(z)⌋ by Claim 3.9.

If dH×(z) = 5, then f(z) 6 3 by Claim 3.9 and n4−

H×(z) = 0 by Claims 3.2

and 3.7. Thus, z is not incident with any real 3-face containing a 4−-vertex. And so

ω′(z) > 5− 4− 3 · 1
3 = 0 by (R1).

If dH×(z) = l with 6 6 l 6 10, then n3
H×(z) 6 l − 6 by Claim 3.7. Thus,

ω′(z) > l − 4− (l − 6) · 1
3 − ⌊ 2

3 l⌋ ·
1
2 > 0 by (R1)–(R2).

If dH× (z) = l with 11 6 l 6 13, then f(z)+n3
H×(z) 6 2⌊ 2

3 l⌋+1 when l ≡ 1 (mod 3)

and f(z)+n3
H×(z) 6 2⌊ 2

3 l⌋ otherwise since every real 3-face is incident with at most

one 3-vertex by Claims 3.2 and 3.7. Thus, ω′(z) > l− 4−max{f(z) · 12 +n3
H×(z) ·

1
3 :

f(z) + n3
H×(z) 6 2⌊ 2

3 l⌋+ 1 and f(z) 6 ⌊ 2
3 l⌋} > 1

9 (4l− 39) > 5
9 by (R1)–(R2).

Part 2 : Suppose that z is adjacent to one false 4-vertex and ff(z) 6 1. Then

f(z) 6 ⌊ 2
3dH×(z)⌋ when dH×(z) ≡ 1 (mod 3) and f(z) 6 ⌊ 2

3dH×(z)⌋−1 otherwise by

Claim 3.9. Since every real 3-face is incident with at most one 3-vertex by Claims 3.2

and 3.7, f(z) + n3
H×(z) 6 2⌊ 2

3dH×(z)⌋.

If dH× (z) = 5, then f(z) 6 2 by Claim 3.9 and z is not adjacent to any l-vertex

with l 6 4 by Claims 3.2 and 3.7. Thus, z is not incident with any real 3-face

containing a 4−-vertex. And so ω′(z) > 5− 4− 2 · 1
3 − 1

3 = 0 by (R1) and (R4).
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If dH× (z) = 6, then f(z) 6 3 by Claim 3.9 and z is not adjacent to any l-vertex

with l 6 4 by Claim 3.7. Thus, z is not incident with any real 3-face containing

a 4−-vertex. And so ω′(z) > 6− 4− 3 · 1
3 − 1 = 0 by (R1) and (R4).

If dH×(z) = 7, then f(z) 6 4 by Claim 3.9 and z is adjacent to at most one l-vertex

with l 6 4 by Claim 3.7. Thus, z is incident with at most two real 3-faces containing

a 4−-vertex. And so ω′(z) > 7− 4− 2 · 1
3 − 2 · 1

2 −
1
3 − 1 = 0 by (R1)–(R2) and (R4).

If dH×(z) = 8, then f(z) 6 4 by Claim 3.9 and n3
H×(z) 6 2 by Claim 3.7. Thus,

ω′(z) > 8− 4− 4 · 1
2 − 2 · 1

3 − 4
3 = 0 by (R1)–(R2) and (R4).

If dH×(z) = 9, then f(z) 6 5 by Claim 3.9 and n3
H×(z) 6 3 by Claim 3.7. Thus,

ω′(z) > 9− 4− 5 · 1
2 − 3 · 1

3 − 4
3 = 1

6 by (R1)–(R2) and (R4).

If dH×(z) = 10, then f(z) 6 6 by Claim 3.9 and n3
H×(z) 6 4 by Claim 3.7. Thus,

ω′(z) > 10− 4− 4 · 1
3 − 6 · 1

2 − 4
3 = 1

3 by (R1)–(R2) and (R4).

If dH×(z) = 11, then f(z) 6 6 by Claim 3.9 and f(z) + n3
H×(z) 6 2⌊ 22

3 ⌋. Thus,

ω′(z) > 11− 4− 8 · 1
3 − 6 · 1

2 − 4
3 = 0 by (R1)–(R2) and (R4).

If dH×(z) = 12, then f(z) 6 7 by Claim 3.9 and f(z) + n3
H×(z) 6 2⌊ 24

3 ⌋. Thus,

ω′(z) > 12− 4− 9 · 1
3 − 7 · 1

2 − 4
3 = 1

6 by (R1)–(R2) and (R4).

If dH×(z) = 13, then f(z) 6 8 by Claim 3.9 and f(z) + n3
H×(z) 6 2⌊ 26

3 ⌋. Thus,

ω′(z) > 13− 4− 8 · 1
3 − 8 · 1

2 − 4
3 = 1 by (R1)–(R2) and (R4).

Part 3 : Suppose that z is adjacent to one false 4-vertex and ff(z) = 2. Then

f(z) 6 ⌊ 2
3dH× (z)⌋ − 1 when dH×(z) ≡ 1 (mod 3) and f(z) 6 ⌊ 2

3dH× (z)⌋ − 2 other-

wise by Claim 3.9. Since every real 3-face is incident with at most one 3-vertex by

Claims 3.2 and 3.7, f(z) + n3
H×(z) 6 2⌊ 2

3dH×(z)⌋ − 1 when dH× (z) ≡ 1(mod 3) and

f(z) + n3
H×(z) 6 2⌊ 2

3dH×(z)⌋ − 2 otherwise.

If dH× (z) = 5, then f(z) 6 1 by Claim 3.9 and z is not adjacent to any l-vertex

with l 6 4 by Claims 3.2 and 3.7. Thus, z is not incident with any real 3-face

containing a 4−-vertex. And so ω′(z) > 5− 4− 2
3 − 1

3 = 0 by (R1) and (R4).

If dH× (z) = 6, then f(z) 6 2 by Claim 3.9 and z is not adjacent to any l-vertex

with l 6 4 by Claim 3.7. Thus, z is not incident with any real 3-face containing

a 4−-vertex. And so ω′(z) > 6− 4− 4
3 − 2 · 1

3 = 0 by (R1) and (R4).

If dH×(z) = 7, then f(z) 6 3 by Claim 3.9 and z is adjacent to at most one l-vertex

with l 6 4 by Claim 3.7. If z is not adjacent to any l-vertex with l 6 4, then z is not

incident with any real 3-face containing a 4−-vertex. Thus, ω′(z) > 7−4−3· 13−
5
3 = 1

3

by (R1) and (R4). If z is adjacent to one l-vertex with l 6 4, then z is incident with at

most two real 3-faces containing a 4−-vertex. Thus, ω′(z) > 7−4−2· 12−
1
3−

1
3−

4
3 = 0

by (R1)–(R2) and (R4).

If dH×(z) = 8, then f(z) 6 3 by Claim 3.9 and n3
H×(z) 6 2 by Claim 3.7. Thus,

ω′(z) > 8− 4− 2 · 1
3 − 3 · 1

2 − 11
6 = 0 by (R1)–(R2) and (R4).

If dH×(z) = 9, then f(z) 6 4 by Claim 3.9 and n3
H×(z) 6 3 by Claim 3.7. Thus,

ω′(z) > 9− 4− 3 · 1
3 − 4 · 1

2 − 11
6 = 1

6 by (R1)–(R2) and (R4).
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If dH×(z) = 10, then f(z) 6 5 by Claim 3.9 and n3
H×(z) 6 4 by Claim 3.7. Thus,

ω′(z) > 10− 4− 4 · 1
3 − 5 · 1

2 − 11
6 = 1

3 by (R1)–(R2) and (R4).

If dH×(z) = 11, then f(z) 6 5 by Claim 3.9 and f(z)+n3
H×(z) 6 2⌊ 22

3 ⌋−2. Thus,

ω′(z) > 11− 4− 7 · 1
3 − 5 · 1

2 − 11
6 = 1

3 by (R1)–(R2) and (R4).

If dH×(z) = 12, then f(z) 6 6 by Claim 3.9 and f(z)+n3
H×(z) 6 2⌊ 24

3 ⌋−2. Thus,

ω′(z) > 12− 4− 8 · 1
3 − 6 · 1

2 − 11
6 = 1

2 by (R1)–(R2) and (R4).

If dH×(z) = 13, then f(z) 6 7 by Claim 3.9 and f(z)+n3
H×(z) 6 2⌊ 26

3 ⌋−1. Thus,

ω′(z) > 13− 4− 8 · 1
3 − 7 · 1

2 − 11
6 = 1 by (R1)–(R2) and (R4).

Therefore, z0 /∈ V (H).

By the analysis above, there is no z0 ∈ V (H×) ∪ F (H×) such that ω′(z0) < 0,

which contradicts (3.1). The proof of Theorem 1.4 is completed. �
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