[1] Bosq D.:
Vitesses optimales et superoptimales des estimateurs fonctionnels pour les processus à temps continu. C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 11, 1075–1078 (French).
MR 1249792
[6] Cardot H., Ferraty F., Sarda P.:
Spline estimators for the functional linear model. Statist. Sinica 13 (2003), no. 3, 571–591.
MR 1997162
[7] Castellana J. V., Leadbetter M. R.:
On smoothed probability density estimation for stationary processes. Stochastic Process. Appl. 21 (1986), no. 2, 179–193.
MR 0833950
[8] Collomb G., Härdle W.:
Strong uniform convergence rates in robust nonparametric time series analysis and prediction: kernel regression estimation from dependent observations. Stochastic Process. Appl. 23 (1986), no. 1, 77–89.
MR 0866288
[9] Dabo-Niang S.:
Density estimation in a separable metric space. Ann. I.S.U.P. 47 (2003), no. 1–2, 3–21.
MR 2002884
[10] Dabo-Niang S.:
Density estimation by orthogonal series in an infinite dimensional space: application to processes of diffusion type I. The International Conf. on Recent Trends and Directions in Nonparametric Statistics, J. Nonparametr. Stat. 16 (2004), no. 1–2, 171–186.
DOI 10.1080/10485250310001624837 |
MR 2053068
[11] Demongeot J., Laksaci A., Madani F., Rachdi M.:
A fast functional locally modeled conditional density and mode for functional time-series. Recent Advances in Functional Data Analysis and Related Topics, Contrib. Statist., Physica Verlag, Springer, Heidelberg, 2011, 85–90.
MR 2815565
[12] Ferraty F., Goia A., Vieu P.:
Functional nonparametric model for time series: a fractal approach for dimension reduction. Test 11 (2002), no. 2, 317–344.
DOI 10.1007/BF02595710 |
MR 1947601
[13] Ferraty F., Laksaci A., Tadj A., Vieu P.:
Kernel regression with functional response. Electron. J. Stat. 5 (2011), 159–171.
DOI 10.1214/11-EJS600 |
MR 2786486
[14] Ferraty F., Rabhi A., Vieu P:
Conditional quantiles for dependent functional data with application to the climatic El Niño phenomenon. Sankhyā 67 (2005), no. 2, 378–398.
MR 2208895
[15] Ferraty F., Vieu P.:
Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination. The International Conf. on Recent Trends and Directions in Nonparametric Statistics, J. Nonparametr. Stat. 16 (2004), no. 1–2, 111–125.
DOI 10.1080/10485250310001622686 |
MR 2053065
[16] Ferraty F., Vieu P.:
Nonparametric Functional Data Analysis. Theory and Practice, Springer Series in Statistics, Springer, New York, 2006.
MR 2229687
[18] Grunig R.:
Probabilités conditionnelles régulières sur des tribus de type non dénombrable. Ann. Inst. H. Poincaré Sect. B (N.S.) 2 (1965/1966), no. 3, 227–229 (French).
MR 0196799
[22] Masry E.:
Nonparametric regression estimation for dependent functional data: asymptotic normality. Stochastic Process. Appl. 115 (2005), no. 1, 155–177.
DOI 10.1016/j.spa.2004.07.006 |
MR 2105373
[23] Ramsay J. O., Silverman B. W.:
Functional Data Analysis. Springer Series in Statistics, Springer, New York, 2005.
MR 2168993
[24] Rio E.:
Théorie asymptotique des processus aléatoires faiblement dépendants. Mathématiques & Applications, 31, Springer, Berlin, 2000 (French).
MR 2117923
[25] Rosenblatt M.:
Conditional probability density and regression estimators. in Multivariate Analysis II, Proc. Second Internat. Sympos., Dayton, Ohio, 1968, Academic Press, New York, 1969, pages 25–31.
MR 0254987
[28] Watson G. S.:
Smooth regression analysis. Sankhyā Ser. A 26 (1964), 359–372.
MR 0185765