Previous |  Up |  Next

Article

Keywords:
continuous time process; regression function estimation; conditional distribution function
Summary:
We consider two continuous time processes; the first one is valued in a semi-metric space, while the second one is real-valued. In some sense, we extend the results of F. Ferraty and P. Vieu in ``Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination'' (2004), by establishing the convergence, with rates, of the generalized regression function when a real-valued continuous time response is considered. As corollaries, we deduce the convergence of the conditional distribution function as well as conditional quantiles. Note that a parametric rate of convergence in probability is reached while working with a naive kernel.
References:
[1] Bosq D.: Vitesses optimales et superoptimales des estimateurs fonctionnels pour les processus à temps continu. C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 11, 1075–1078 (French). MR 1249792
[2] Bosq D.: Nonparametric Statistics for Stochastic Processes. Estimation and Prediction, Lecture Notes in Statistics, 110, Springer, New York, 1998. DOI 10.1007/978-1-4612-1718-3 | MR 1640691
[3] Bosq D.: Linear Processes in Function Spaces. Theory and Applications, Lecture Notes in Statistics, 149, Springer, New York, 2000. DOI 10.1007/978-1-4612-1154-9_8 | MR 1783138
[4] Bradley R. C.: Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2 (2005), 107–144. DOI 10.1214/154957805100000104 | MR 2178042
[5] Cardot H., Ferraty F., Sarda P.: Functional linear model. Statist. Probab. Lett. 45 (1999), no. 1, 11–22. DOI 10.1016/S0167-7152(99)00036-X | MR 1718346
[6] Cardot H., Ferraty F., Sarda P.: Spline estimators for the functional linear model. Statist. Sinica 13 (2003), no. 3, 571–591. MR 1997162
[7] Castellana J. V., Leadbetter M. R.: On smoothed probability density estimation for stationary processes. Stochastic Process. Appl. 21 (1986), no. 2, 179–193. MR 0833950
[8] Collomb G., Härdle W.: Strong uniform convergence rates in robust nonparametric time series analysis and prediction: kernel regression estimation from dependent observations. Stochastic Process. Appl. 23 (1986), no. 1, 77–89. MR 0866288
[9] Dabo-Niang S.: Density estimation in a separable metric space. Ann. I.S.U.P. 47 (2003), no. 1–2, 3–21. MR 2002884
[10] Dabo-Niang S.: Density estimation by orthogonal series in an infinite dimensional space: application to processes of diffusion type I. The International Conf. on Recent Trends and Directions in Nonparametric Statistics, J. Nonparametr. Stat. 16 (2004), no. 1–2, 171–186. DOI 10.1080/10485250310001624837 | MR 2053068
[11] Demongeot J., Laksaci A., Madani F., Rachdi M.: A fast functional locally modeled conditional density and mode for functional time-series. Recent Advances in Functional Data Analysis and Related Topics, Contrib. Statist., Physica Verlag, Springer, Heidelberg, 2011, 85–90. MR 2815565
[12] Ferraty F., Goia A., Vieu P.: Functional nonparametric model for time series: a fractal approach for dimension reduction. Test 11 (2002), no. 2, 317–344. DOI 10.1007/BF02595710 | MR 1947601
[13] Ferraty F., Laksaci A., Tadj A., Vieu P.: Kernel regression with functional response. Electron. J. Stat. 5 (2011), 159–171. DOI 10.1214/11-EJS600 | MR 2786486
[14] Ferraty F., Rabhi A., Vieu P: Conditional quantiles for dependent functional data with application to the climatic El Niño phenomenon. Sankhyā 67 (2005), no. 2, 378–398. MR 2208895
[15] Ferraty F., Vieu P.: Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination. The International Conf. on Recent Trends and Directions in Nonparametric Statistics, J. Nonparametr. Stat. 16 (2004), no. 1–2, 111–125. DOI 10.1080/10485250310001622686 | MR 2053065
[16] Ferraty F., Vieu P.: Nonparametric Functional Data Analysis. Theory and Practice, Springer Series in Statistics, Springer, New York, 2006. MR 2229687
[17] Frank I. E., Friedman J. H.: A statistical view of some chemometric regression tools. Technometrics 35 (1993), no. 2, 109–135. DOI 10.1080/00401706.1993.10485033
[18] Grunig R.: Probabilités conditionnelles régulières sur des tribus de type non dénombrable. Ann. Inst. H. Poincaré Sect. B (N.S.) 2 (1965/1966), no. 3, 227–229 (French). MR 0196799
[19] Jiřina M.: Conditional probabilities on strictly separable $\sigma$-algebras. Czechoslovak. Math. J. 4(79) (1954), 372–380. DOI 10.21136/CMJ.1954.100124 | MR 0069416
[20] Jiřina M.: On regular conditional probabilities. Czechoslovak. Math. J. 9(84) (1959), 445–451. DOI 10.21136/CMJ.1959.100368 | MR 0115202
[21] Krzy.zak A., Pawlak M.: The pointwise rate of convergence of the kernel regression estimate. J. Statist. Plann. Inference 16 (1987), no. 2, 159–166. DOI 10.1016/0378-3758(87)90065-6 | MR 0895756
[22] Masry E.: Nonparametric regression estimation for dependent functional data: asymptotic normality. Stochastic Process. Appl. 115 (2005), no. 1, 155–177. DOI 10.1016/j.spa.2004.07.006 | MR 2105373
[23] Ramsay J. O., Silverman B. W.: Functional Data Analysis. Springer Series in Statistics, Springer, New York, 2005. MR 2168993
[24] Rio E.: Théorie asymptotique des processus aléatoires faiblement dépendants. Mathématiques & Applications, 31, Springer, Berlin, 2000 (French). MR 2117923
[25] Rosenblatt M.: Conditional probability density and regression estimators. in Multivariate Analysis II, Proc. Second Internat. Sympos., Dayton, Ohio, 1968, Academic Press, New York, 1969, pages 25–31. MR 0254987
[26] Roussas G. G.: Nonparametric regression estimation under mixing conditions. Stochastic Process. Appl. 36 (1990), no. 1, 107–116. DOI 10.1016/0304-4149(90)90045-T | MR 1075604 | Zbl 0699.62038
[27] Stone C. J.: Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10 (1982), no. 4, 1040–1053. DOI 10.1214/aos/1176345969 | MR 0673642
[28] Watson G. S.: Smooth regression analysis. Sankhyā Ser. A 26 (1964), 359–372. MR 0185765
Partner of
EuDML logo