Previous |  Up |  Next

Article

Keywords:
box topology; connectedness; completely Hausdorff space; Urysohn space; Brown space
Summary:
In this paper the following two propositions are proved: (a) If $X_\alpha$, $\alpha \in A$, is an infinite system of connected spaces such that infinitely many of them are nondegenerated completely Hausdorff topological spaces then the box product $\square_{\alpha \in A} X_\alpha$ can be decomposed into continuum many disjoint nonempty open subsets, in particular, it is disconnected. (b) If $X_\alpha$, $\alpha \in A$, is an infinite system of Brown Hausdorff topological spaces then the box product $\square_{\alpha \in A} X_\alpha$ is also Brown Hausdorff, and hence, it is connected. A space is Brown if for every pair of its open nonempty subsets there exists a point common to their closures. There are many examples of countable Brown Hausdorff spaces in literature.
References:
[1] Acosta G., Madriz-Mendoza M., Dominguez J. D. C. A.: Brown spaces and the Golomb topology. Open Acc. J. Math. Theor. Phy. 1 (2018), no. 6, 242–247. DOI 10.15406/oajmtp.2018.01.00042
[2] Bing R. H.: A connected countable Hausdorff space. Proc. Amer. Math. Soc. 4 (1953), 474. DOI 10.1090/S0002-9939-1953-0060806-9 | MR 0060806
[3] Chatyrko V. A., Karassev A.: The (dis)connectedness of products in the box topology. Questions Answers Gen. Topology 31 (2013), no. 1, 11–21. MR 3075890
[4] Chatyrko V. A., Nyagahakwa V.: Vitali selectors in topological groups and related semigroups of sets. Questions Answers Gen. Topology 33 (2015), no. 2, 93–102. MR 3444173
[5] Golomb S. W.: A connected topology for integers. Amer. Math. Monthly 66 8 (1959), no. 8, 663–665. MR 0107622
[6] Halimskiĭ E. D.: The topologies of generalized segments. Dokl. Akad. Nauk SSSR 189 (1969), 740–743. MR 0256359
[7] Hewitt E.: On two problems of Urysohn. Ann. of Math. 47 (1946), no. 3, 503–509. DOI 10.2307/1969089 | MR 0017527
[8] Jones F. B., Stone A. H.: Countable locally connected Urysohn spaces. Colloq. Math. 22 (1971), 239–244. DOI 10.4064/cm-22-2-239-244 | MR 0283764
[9] Kannan V., Rajagopalan M.: On countable locally connected spaces. Colloq. Math. 29 (1974), 93–100, 159. DOI 10.4064/cm-29-1-93-100 | MR 0339068
[10] Kirch A. M.: A countable connected, locally connected Hausdorff space. Amer. Math. Monthly 76 (1969), 169–171. DOI 10.1080/00029890.1969.12000163 | MR 0239563
[11] Knight C. J.: Box topologies. Quart. J. Math. Oxford Ser. (2) 15 (1964), 41–54. MR 0160184
[12] Kong T. Y., Kopperman R., Meyer P. R.: A topological approach to digital topology. Amer. Math. Monthly 98 (1991), no. 10, 901–917. DOI 10.1080/00029890.1991.12000810 | MR 1137537
[13] Lawrence L. B.: Infinite-dimensional countable connected Hausdorff spaces. Houston J. Math. 20 (1994), no. 3, 539–546. MR 1287993
[14] Miller G. G.: Countable connected spaces. Proc. Amer. Math. Soc. 26 (1970), 355–360. DOI 10.1090/S0002-9939-1970-0263005-0 | MR 0263005
[15] Munkres J. R.: Topology. Prentice Hall, Upper Saddle River, 2000. MR 3728284 | Zbl 0951.54001
[16] Ritter G. X.: A connected locally connected, countable Hausdorff space. Amer. Math. Monthly 83 (1976), no. 3, 185–186. DOI 10.1080/00029890.1976.11994070 | MR 0391047
[17] Roy P.: A countable connected Urysohn space with a dispersion point. Duke Math. J. 33 (1966), 331–333. MR 0196701
[18] Shimrat M.: Embedding in homogeneous spaces. Quart. J. Math. Oxford Ser. (2) 5 (1954), 304–311. DOI 10.1093/qmath/5.1.304 | MR 0068204
[19] Vought E. J.: A countable connected Urysohn space with a dispersion point that is regular almost everywhere. Colloq. Math. 28 (1973), 205–209. DOI 10.4064/cm-28-2-205-209 | MR 0326655
Partner of
EuDML logo