Previous |  Up |  Next

Article

Keywords:
functional data; local linear estimator; conditional cumulative; conditional quantile; nonparametric regression; small balls probability
Summary:
In this paper, we investigate the problem of the conditional cumulative of a scalar response variable given a random variable taking values in a semi-metric space. The uniform almost complete consistency of this estimate is stated under some conditions. Moreover, as an application, we use the obtained results to derive some asymptotic properties for the local linear estimator of the conditional quantile.
References:
[1] Barrientos-Marin, J., Ferraty, F., Vieu, P.: Locally modelled regression and functional data. J. Nonparametr. Statist. 22 (2010), 617-632. DOI 
[2] Baillo, A., Grané, A.: Local linear regression for functional predictor and scalar response. Journal of Multivariate Analysis. 100 (2009), 102-111. DOI 
[3] Berlinet, A., Gannoun, A., Matzner-Lober, E.: Asymptotic normality of convergent estimators of the conditional mode. Canadian J. Statistics. 26 (1998), 365-380. DOI 
[4] Fortiana, E. Boj P. Delicado J.: Distance-based local linear regression for functional predictors. Computational Statistics and Data Analysis 54 (2010), 429-437. DOI 
[5] Bosq, D.: Linear processes in function spaces. Theory and Applications. Lecture Notes in Statistics. 149 (2000), Springer-Verlag. DOI 10.1007/978-1-4612-1154-9_8
[6] Bouanani, O., Laksaci, A., Rachdi, R., Rahmani, S.: Asymptotic normality of some conditional nonparametric functional parameters in high-dimensional statistics. Behaviormetrika 46 (2019), 199-233. DOI 
[7] Demongeot, J., Laksaci, A., Madani, F., Rachdi, M.: A fast functional locally modeled conditional density and mode for functional time-series. Recent Advances in Functional Data Analysis and Related Topics, Contributions to Statistics, Physica-Verlag/Springer 2011, pp. 85-90.
[8] Demongeot, J., Laksaci, A., Madani, F., Rachdi, M.: Functional data: local linear estimation of the conditional density and its application. Statistics 47 (2013), 26-44. DOI 
[9] J.Demongeot, Laksaci, A., Rachdi, M., Rahmani, S.: On the local modalization of the conditional distribution for functional data. Sankhya A 76 (2014), 2, 328-355. DOI 
[10] Fan, J.: Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87 (1992), 998-1004. DOI 
[11] Fan, J., Gijbels, I.: Local Polynomial Modelling and its Applications. Chapman and Hall, London 1996.
[12] Fan, J., Yao, Q.: Nolinear Time Series : Nonparametric and Parametric Methods. (2003) Springer-Verlag, New York.
[13] Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis. Theory and Practice. Springer Series in Statistics. New York 2006.
[14] Ferraty, F., Laksaci, A., Tadj, A., Vieu, P.: Rate of uniform consistency for nonparametric estimates with functional variables. J. Statist. Plann. Inference 140 (2010), 335-352. DOI 
[15] Gannoun, A., Saracco, J., Yu, K.: Nonparametric prediction by conditional median and quantiles. J. Statist. Plann. Inference 117 (2003), 207-223. DOI 
[16] Honda, T.: Nonparametric estimation of a conditional quantile for $\alpha$-mixing processes. Annals of the Institute of Statistical Mathematics 52 (2000), 459-470. DOI 
[17] Kima, C., Ohb, M., Yangc, S., Choi, H.: A local linear estimation of conditional hazard function in censored data. J. Korean Statist. Soc. 39 (2010), 347-355. DOI 
[18] Koenker, R.: Galton, Edgeworth, Frisch, and prospects for quantile regression in econometrics. J. Econometrics 95 (2000), 2, 347-374. DOI 
[19] Koenker, R.: Quantile Regression. Cambridge University Press, 2005. Zbl 1236.62031
[20] Koul, H. L, Mukherjee: Regression quantiles and related processes under long range dependence. Journal of Multivariate Analysis 51 (1994), 318-337. DOI 
[21] Portnoy, S. L.: Asymptotic behavior of regression quantiles in nonstationary dependent cases. Journal of Multivariate Analysis 38 (1991), 100-113. DOI 
[22] Rachdi, M., Laksaci, A., Demongeot, J., Abdali, A., Madani, F.: Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data. Comput.l Statist. and Data Anal. 73 (2014), 53-68. DOI 
[23] Ramsay, J. O., Silverman, B. W.: Functional Data Analysis Second edition. Springer, New York 2005.
[24] Roussas, G. G.: On some properties of nonparametric estimates of probability density functions. Bull. Soc. Math. Greece (N.S.) 9 (1968), 29-43. DOI 
[25] Samanta, M.: Non-parametric estimation of conditional quantiles. Statistics and Probability Letters. vol. 7, issue 5 (1989), 407-412. DOI 
[26] Stone, C. J.: Consistent Nonparametric Regression. Ann. Statist. 5 (1977), 595-645. DOI 
[27] Stute, W.: Conditional Empirical Processes. Ann. Statist. 14(2) (1986), 638-647. DOI 
[28] Tanner, M. A., Wong, W. H.: The estimation of the hazard function from randomly censored data by the kernel method. Ann. Statist. 11 (1983), 989-993. DOI 
[29] Uspensky, J. V.: Introduction to Mathematical Probability. McGraw-Hill Book Company 1937.
[30] Watson, G. S., Leadbetter, M. R.: Hazard Analysis I. Biometrika 51 (1964), 175-184. DOI 
[31] Xiong, X., Zhou, P., Ailian, Ch.: Asymptotic normality of the local linear estimation of the conditional density for functional time series data. Comm. Statist. Theory Methods 47 (2017), 3418-3440. DOI 
[32] Youndjé, E., Sarda, P., Vieu, P.: Optimal smooth hazard estimates. Test 5 (1996), 379-394. DOI 
[33] Yu, K., Lu, Z., Stander, J.: Quantile regression : applications and current research areas. The Statistician 52 (2003), 331-350. DOI 
Partner of
EuDML logo