[1] Barrientos-Marin, J., Ferraty, F., Vieu, P.:
Locally modelled regression and functional data. J. Nonparametr. Statist. 22 (2010), 617-632.
DOI
[2] Baillo, A., Grané, A.:
Local linear regression for functional predictor and scalar response. Journal of Multivariate Analysis. 100 (2009), 102-111.
DOI
[3] Berlinet, A., Gannoun, A., Matzner-Lober, E.:
Asymptotic normality of convergent estimators of the conditional mode. Canadian J. Statistics. 26 (1998), 365-380.
DOI
[4] Fortiana, E. Boj P. Delicado J.:
Distance-based local linear regression for functional predictors. Computational Statistics and Data Analysis 54 (2010), 429-437.
DOI
[5] Bosq, D.:
Linear processes in function spaces. Theory and Applications. Lecture Notes in Statistics. 149 (2000), Springer-Verlag.
DOI 10.1007/978-1-4612-1154-9_8
[6] Bouanani, O., Laksaci, A., Rachdi, R., Rahmani, S.:
Asymptotic normality of some conditional nonparametric functional parameters in high-dimensional statistics. Behaviormetrika 46 (2019), 199-233.
DOI
[7] Demongeot, J., Laksaci, A., Madani, F., Rachdi, M.: A fast functional locally modeled conditional density and mode for functional time-series. Recent Advances in Functional Data Analysis and Related Topics, Contributions to Statistics, Physica-Verlag/Springer 2011, pp. 85-90.
[8] Demongeot, J., Laksaci, A., Madani, F., Rachdi, M.:
Functional data: local linear estimation of the conditional density and its application. Statistics 47 (2013), 26-44.
DOI
[9] J.Demongeot, Laksaci, A., Rachdi, M., Rahmani, S.:
On the local modalization of the conditional distribution for functional data. Sankhya A 76 (2014), 2, 328-355.
DOI
[10] Fan, J.:
Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87 (1992), 998-1004.
DOI
[11] Fan, J., Gijbels, I.: Local Polynomial Modelling and its Applications. Chapman and Hall, London 1996.
[12] Fan, J., Yao, Q.: Nolinear Time Series : Nonparametric and Parametric Methods. (2003) Springer-Verlag, New York.
[13] Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis. Theory and Practice. Springer Series in Statistics. New York 2006.
[14] Ferraty, F., Laksaci, A., Tadj, A., Vieu, P.:
Rate of uniform consistency for nonparametric estimates with functional variables. J. Statist. Plann. Inference 140 (2010), 335-352.
DOI
[15] Gannoun, A., Saracco, J., Yu, K.:
Nonparametric prediction by conditional median and quantiles. J. Statist. Plann. Inference 117 (2003), 207-223.
DOI
[16] Honda, T.:
Nonparametric estimation of a conditional quantile for $\alpha$-mixing processes. Annals of the Institute of Statistical Mathematics 52 (2000), 459-470.
DOI
[17] Kima, C., Ohb, M., Yangc, S., Choi, H.:
A local linear estimation of conditional hazard function in censored data. J. Korean Statist. Soc. 39 (2010), 347-355.
DOI
[18] Koenker, R.:
Galton, Edgeworth, Frisch, and prospects for quantile regression in econometrics. J. Econometrics 95 (2000), 2, 347-374.
DOI
[19] Koenker, R.:
Quantile Regression. Cambridge University Press, 2005.
Zbl 1236.62031
[20] Koul, H. L, Mukherjee:
Regression quantiles and related processes under long range dependence. Journal of Multivariate Analysis 51 (1994), 318-337.
DOI
[21] Portnoy, S. L.:
Asymptotic behavior of regression quantiles in nonstationary dependent cases. Journal of Multivariate Analysis 38 (1991), 100-113.
DOI
[22] Rachdi, M., Laksaci, A., Demongeot, J., Abdali, A., Madani, F.:
Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data. Comput.l Statist. and Data Anal. 73 (2014), 53-68.
DOI
[23] Ramsay, J. O., Silverman, B. W.: Functional Data Analysis Second edition. Springer, New York 2005.
[24] Roussas, G. G.:
On some properties of nonparametric estimates of probability density functions. Bull. Soc. Math. Greece (N.S.) 9 (1968), 29-43.
DOI
[25] Samanta, M.:
Non-parametric estimation of conditional quantiles. Statistics and Probability Letters. vol. 7, issue 5 (1989), 407-412.
DOI
[26] Stone, C. J.:
Consistent Nonparametric Regression. Ann. Statist. 5 (1977), 595-645.
DOI
[27] Stute, W.:
Conditional Empirical Processes. Ann. Statist. 14(2) (1986), 638-647.
DOI
[28] Tanner, M. A., Wong, W. H.:
The estimation of the hazard function from randomly censored data by the kernel method. Ann. Statist. 11 (1983), 989-993.
DOI
[29] Uspensky, J. V.: Introduction to Mathematical Probability. McGraw-Hill Book Company 1937.
[30] Watson, G. S., Leadbetter, M. R.:
Hazard Analysis I. Biometrika 51 (1964), 175-184.
DOI
[31] Xiong, X., Zhou, P., Ailian, Ch.:
Asymptotic normality of the local linear estimation of the conditional density for functional time series data. Comm. Statist. Theory Methods 47 (2017), 3418-3440.
DOI
[32] Youndjé, E., Sarda, P., Vieu, P.:
Optimal smooth hazard estimates. Test 5 (1996), 379-394.
DOI
[33] Yu, K., Lu, Z., Stander, J.:
Quantile regression : applications and current research areas. The Statistician 52 (2003), 331-350.
DOI