[1] Aumann, R. J., Maschler, M.:
Game theoretic analysis of a bankruptcy problem from the Talmud. J. Econom. Theory 36 (1982), 195-213.
DOI
[2] games, Cooperative interval:
A survey. Cent. Europ. J. Oper. Res. 18 (2010), 397-411.
DOI
[3] Branzei, R., Dimitrov, D., Pickl, S., Tijs, S.:
How to cope with division problems under interval uncertainty of claims?. Int. J. Uncertain. Fuzz. 12 (2004), 191-200.
DOI
[4] Curiel, I. J., Maschler, M., Tijs, S. H.:
Bankruptcy games. Z. Oper. Res. 31 (1987), A143-A159.
DOI
[5] Driessen, T.: Cooperative Games, Solutions and Applications. Kluwer Academic Publishers, 1988.
[6] Elishakoff, I.: Resolution of two millennia-old Talmudic mathematical conundrums. BeOr HaTorah 21 (2012), 61-76.
[7] Elishakoff, I., Bégin-Drolet, A.: Talmudic bankruptcy problem: special and general solutions. Scientiae Mathematicae Japonicae 69 (2009), 387-403.
[8] Habis, H., Herings, P. J. J.:
Stochastic bankruptcy games. Int. J. Game Theory 42 (2013), 973-988.
DOI
[9] Mallozzi, L., Scalzo, V., Tijs, S.:
Fuzzy interval cooperative games. Fuzzy Set Syst. 165 (2011), 1, 98-105.
DOI
[10] Moreno-Ternero, J. D., Villar, A.:
The Talmud rule and the securement of agents' awards. Math. Soc. Sci. 47 (2004), 245-257.
DOI
[12] Pulido, M., Sánchez-Soriano, J., Llorca, N.:
Game theory techniques for university management: an extended bankruptcy model. Ann. Oper. Res. 109 (2002), 129-142.
DOI
[13] Schmeidler, D.:
The nucleolus of a characeristic function. SIAM J. Appl. Math. 17 (1969), 1163-1170.
DOI
[14] Zhao, W. J., Liu, J. C.:
Interval-valued fuzzy cooperative games based on the least square excess and its application to the profit allocation of the road freight coalition. Symmetry 10 (2018), 709.
DOI
[15] Tijs, S.: Bounds for the core of a game and the t-value. In O. Moeschlin, & D. Pallaschke (Eds.), Game Theory Math. Econom. (1981), pp. 123-132. North-Holland Publishing Company.
[16] Yager, R. R., Kreinovich, V.:
Fair division under interval uncertainty. Int. J. Uncert. Fuzz. 8 (2000), 611-618.
DOI 10.1142/S0218488500000423
[17] Yu, X., Zhang, Q.:
Core for game with fuzzy generalized triangular payoff value. Int. J. Uncert. Fuzz. 27 (2019), 789-813.
DOI