[1] Chen, Y., Feng, Y., Sun, J.:
Regression analysis of multivariate current status data with auxiliary covariates under the additive hazards model. Comput. Statist. Data Anal. 87 (2015), 34-45.
DOI
[2] Chen, L., Sun, J.:
A multiple imputation approach to the analysis of current status data with the additive hazards model. Commun. Stat. Theor. Meth. 38 (2009), 1009-1018.
DOI 10.1080/03610920802361407
[3] Feng, Y., Ma, L., Sun, J.:
Additive hazards regression with auxiliary covariate for case I interval censored data. Scand. J. Stat. 42 (2015), 118-136.
DOI
[4] Huang, J.:
Efficient estimation for the proportional hazards model with interval censoring. Ann. Statist. 24 (1996), 540-568.
DOI 10.1214/aos/1032894452
[5] Jewell, N., Laan, M. van der:
Generalizations of current status data with applications. Lifetime Data Anal. 1 (1995), 101-110.
DOI
[6] Lin, D., Oakes, D., Ying, Z.:
Additive hazards regression with current status data. Biometrika 85 (1998), 289-298.
DOI
[7] Lin, D., Ying, Z.:
Semiparametric analysis of the additive risk model. Biometrika 81 (1994), 61-71.
DOI |
Zbl 0796.62099
[8] Lin, D., Ying, Z.:
Semiparametric and nonparametric regression analysis of longitudinal data. J. Amer. Statist. Assoc. 96 (2001), 453, 103-126.
DOI
[9] Liu, W., Lu, X., Xie, C.: Empirical likelihood for the additive hazards model with current status data. Comm. Statist. Simulation Comput. 45 (2016), 8, 2720-2732.
[10] Lu, X., Song, Peter X. K.:
On efficient estimation in additive hazards regression with current status data. Comput. Statist. Data Anal. 56 (2012), 6, 2051-2058.
DOI
[11] Martinussen, T., Scheike, T. H.:
Efficient estimation in additive hazards regression with current status data. Biometrika 89 (2002), 649-658.
DOI
[12] McKeague, I., Sasieni, P.:
A partly parametric additive risk model. Biometrika 81 (1994), 501-514.
DOI
[13] Owen, A. B.: Empirical Likelihood. Chapman and Hall, 2001.
[14] Owen, A. B.:
Empirical likelihood and confidence regions. Ann. Statist. 18 (1990), 90-120.
DOI
[15] Owen, A. B.:
Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 (1988), 237-249.
DOI
[16] Prentice, R.:
Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika 69 (1982), 331-342.
DOI
[17] Qin, J., Lawless, J.:
Empirical likelihood and general estimating equations. Ann. Statist. 22 (1994), 300-325.
DOI
[18] Rossini, J., Tsiatis, A. A.:
A semiparametric proportional odds regression model for the analysis of current status data. J. Am. Stat. Assoc. 91 (1996), 713-721.
DOI 10.1080/01621459.1996.10476939
[19] Sun, J.: The Statistical Analysis of Interval-censored Failure Time Data. Springer, New York 2006.
[20] Wang, N., Wang, L., McMahan, C.:
Regression analysis of bivariate current status data under the gamma-frailty proportional hazards model using the EM algorithm. Comput. Stat. Data Anal. 83 (2015), 140-150.
DOI
[21] Zhang, Z., Sun, J., Sun, L.:
Statistical analysis of current status data with informative observation times. Stat. Med. 24 (2005), 1399-1407.
DOI
[22] Zhang, Z., Sun, L., Zhao, X., Sun, J.:
Regression analysis of interval-censored failure time data with linear transformation models. Canad. J. Statist. 33 (2005), 61-70.
DOI
[23] Zhang, Z., Zhao, Y.:
Empirical likelihood for linear transformation models with interval-censored failure time data. J. Multivariate Anal. 116 (2013), 398-409.
DOI
[24] Zhao, Y., Hsu, Y. S.:
Semiparametric analysis for additive risk model via empirical likelihood. Commun. Stat.-Simul. Comput. 34 (2005), 135-143.
DOI
[25] Zhu, L., Tong, X., Sun, J.:
A transformation approach for the analysis of interval-censored failure time data. Lifetime Data Anal. 14 (2008), 167-178.
DOI
[26] Zhou, M.:
Empirical likelihood analysis of the rank estimator for the censored accelerated failure time model. Biometrika 92 (2005), 492-498.
DOI