Previous |  Up |  Next

Article

Keywords:
current status data; auxiliary covariates; additive hazards model; empirical likelihood
Summary:
In practice, it often occurs that some covariates of interest are not measured because of various reasons, but there may exist some auxiliary information available. In this case, an issue of interest is how to make use of the available auxiliary information for statistical analysis. This paper discusses statistical inference problems in the context of current status data arising from an additive hazards model with auxiliary covariates. An empirical log-likelihood ratio statistic for the regression parameter vector is defined and its limiting distribution is shown to be a standard chi-squared distribution. A profile empirical log-likelihood ratio statistic for a sub-vector of the parameters and its asymptotic distribution are also studied. To assess the finite sample performance of the proposed methods, simulation studies are implemented and simulation results show that the methods work well.
References:
[1] Chen, Y., Feng, Y., Sun, J.: Regression analysis of multivariate current status data with auxiliary covariates under the additive hazards model. Comput. Statist. Data Anal. 87 (2015), 34-45. DOI 
[2] Chen, L., Sun, J.: A multiple imputation approach to the analysis of current status data with the additive hazards model. Commun. Stat. Theor. Meth. 38 (2009), 1009-1018. DOI 10.1080/03610920802361407
[3] Feng, Y., Ma, L., Sun, J.: Additive hazards regression with auxiliary covariate for case I interval censored data. Scand. J. Stat. 42 (2015), 118-136. DOI 
[4] Huang, J.: Efficient estimation for the proportional hazards model with interval censoring. Ann. Statist. 24 (1996), 540-568. DOI 10.1214/aos/1032894452
[5] Jewell, N., Laan, M. van der: Generalizations of current status data with applications. Lifetime Data Anal. 1 (1995), 101-110. DOI 
[6] Lin, D., Oakes, D., Ying, Z.: Additive hazards regression with current status data. Biometrika 85 (1998), 289-298. DOI 
[7] Lin, D., Ying, Z.: Semiparametric analysis of the additive risk model. Biometrika 81 (1994), 61-71. DOI  | Zbl 0796.62099
[8] Lin, D., Ying, Z.: Semiparametric and nonparametric regression analysis of longitudinal data. J. Amer. Statist. Assoc. 96 (2001), 453, 103-126. DOI 
[9] Liu, W., Lu, X., Xie, C.: Empirical likelihood for the additive hazards model with current status data. Comm. Statist. Simulation Comput. 45 (2016), 8, 2720-2732.
[10] Lu, X., Song, Peter X. K.: On efficient estimation in additive hazards regression with current status data. Comput. Statist. Data Anal. 56 (2012), 6, 2051-2058. DOI 
[11] Martinussen, T., Scheike, T. H.: Efficient estimation in additive hazards regression with current status data. Biometrika 89 (2002), 649-658. DOI 
[12] McKeague, I., Sasieni, P.: A partly parametric additive risk model. Biometrika 81 (1994), 501-514. DOI 
[13] Owen, A. B.: Empirical Likelihood. Chapman and Hall, 2001.
[14] Owen, A. B.: Empirical likelihood and confidence regions. Ann. Statist. 18 (1990), 90-120. DOI 
[15] Owen, A. B.: Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 (1988), 237-249. DOI 
[16] Prentice, R.: Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika 69 (1982), 331-342. DOI 
[17] Qin, J., Lawless, J.: Empirical likelihood and general estimating equations. Ann. Statist. 22 (1994), 300-325. DOI 
[18] Rossini, J., Tsiatis, A. A.: A semiparametric proportional odds regression model for the analysis of current status data. J. Am. Stat. Assoc. 91 (1996), 713-721. DOI 10.1080/01621459.1996.10476939
[19] Sun, J.: The Statistical Analysis of Interval-censored Failure Time Data. Springer, New York 2006.
[20] Wang, N., Wang, L., McMahan, C.: Regression analysis of bivariate current status data under the gamma-frailty proportional hazards model using the EM algorithm. Comput. Stat. Data Anal. 83 (2015), 140-150. DOI 
[21] Zhang, Z., Sun, J., Sun, L.: Statistical analysis of current status data with informative observation times. Stat. Med. 24 (2005), 1399-1407. DOI 
[22] Zhang, Z., Sun, L., Zhao, X., Sun, J.: Regression analysis of interval-censored failure time data with linear transformation models. Canad. J. Statist. 33 (2005), 61-70. DOI 
[23] Zhang, Z., Zhao, Y.: Empirical likelihood for linear transformation models with interval-censored failure time data. J. Multivariate Anal. 116 (2013), 398-409. DOI 
[24] Zhao, Y., Hsu, Y. S.: Semiparametric analysis for additive risk model via empirical likelihood. Commun. Stat.-Simul. Comput. 34 (2005), 135-143. DOI 
[25] Zhu, L., Tong, X., Sun, J.: A transformation approach for the analysis of interval-censored failure time data. Lifetime Data Anal. 14 (2008), 167-178. DOI 
[26] Zhou, M.: Empirical likelihood analysis of the rank estimator for the censored accelerated failure time model. Biometrika 92 (2005), 492-498. DOI 
Partner of
EuDML logo