Previous |  Up |  Next

Article

Keywords:
Lorentz Gamma space; reflexivity; Boyd indices; Zippin indices
Summary:
We show that for every $p\in (1,\infty )$ there exists a weight $w$ such that the Lorentz Gamma space $\Gamma _{p,w}$ is reflexive, its lower Boyd and Zippin indices are equal to zero and its upper Boyd and Zippin indices are equal to one. As a consequence, the Hardy-Littlewood maximal operator is unbounded on the constructed reflexive space $\Gamma _{p,w}$ and on its associate space $\Gamma _{p,w}'$.
References:
[1] Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics 129. Academic Press, Boston (1988). DOI 10.1016/s0079-8169(08)x6053-2 | MR 0928802 | Zbl 0647.46057
[2] Boyd, D. W.: The Hilbert transform on rearrangement-invariant spaces. Can. J. Math. 19 (1967), 599-616. DOI 10.4153/CJM-1967-053-7 | MR 0212512 | Zbl 0147.11302
[3] Ciesielski, M.: Relationships between $K$-monotonicity and rotundity properties with application. J. Math. Anal. Appl. 465 (2018), 235-258. DOI 10.1016/j.jmaa.2018.05.008 | MR 3806700 | Zbl 1402.46010
[4] Gogatishvili, A., Kerman, R.: The rearrangement-invariant space $\Gamma_{p,\phi}$. Positivity 18 (2014), 319-345. DOI 10.1007/s11117-013-0246-4 | MR 3215181 | Zbl 1311.46025
[5] Gogatishvili, A., Pick, L.: Discretization and anti-discretization of rearrangement-invariant norms. Publ. Mat., Barc. 47 (2003), 311-358. DOI 10.5565/PUBLMAT_47203_02 | MR 2006487 | Zbl 1066.46023
[6] Kamińska, A., Maligranda, L.: On Lorentz spaces $\Gamma_{p,w}$. Isr. J. Math. 140 (2004), 285-318. DOI 10.1007/BF02786637 | MR 2054849 | Zbl 1068.46019
[7] Krejn, S. G., Petunin, Yu. I., Semenov, E. M.: Interpolation of Linear Operators. Translations of Mathematical Monographs 54. American Mathematical Society, Providence (1982). DOI 10.1090/mmono/054 | MR 0649411 | Zbl 0493.46058
[8] Maligranda, L.: Indices and interpolation. Diss. Math. 234 (1985), 1-49. MR 0820076 | Zbl 0566.46038
[9] Pick, L., Kufner, A., John, O., Fučík, S.: Function Spaces. Volume 1. De Gruyter Series in Nonlinear Analysis and Applications 14. Walter de Gruyter, Berlin (2013). DOI 10.1515/9783110250428 | MR 3024912 | Zbl 1275.46002
[10] Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces. Stud. Math. 96 (1990), 145-158. DOI 10.4064/sm-96-2-145-158 | MR 1052631 | Zbl 0705.42014
[11] Zippin, M.: Interpolation of operators of weak type between rearrangement invariant function spaces. J. Funct. Anal. 7 (1971), 267-284. DOI 10.1016/0022-1236(71)90035-8 | MR 0412793 | Zbl 0224.46038
Partner of
EuDML logo