Previous |  Up |  Next

Article

Keywords:
compressible isentropic Navier-Stokes-Poisson equation; unipolar; energy solution; blow-up
Summary:
We study compressible isentropic Navier-Stokes-Poisson equations in ${\mathbb R}^3$. With some appropriate assumptions on the density, velocity and potential, we show that the classical solution of the Cauchy problem for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing will blow up in finite time. The proof is based on a contradiction argument, which relies on proving the conservation of total mass and total momentum.
References:
[1] Cho, Y., Jin, B. J.: Blow-up of viscous heat-conducting compressible flows. J. Math. Anal. Appl. 320 (2006), 819-826. DOI 10.1016/j.jmaa.2005.08.005 | MR 2225997 | Zbl 1121.35110
[2] Dong, J., Ju, Q.: Blow-up of smooth solutions to compressible quantum Navier-Stokes equations. Sci. Sin., Math. 50 (2020), 873-884 Chinese. DOI 10.1360/N012018-00134
[3] Dong, J., Zhu, J., Wang, Y.: Blow-up for the compressible isentropic Navier-Stokes-Poisson equations. Czech. Math. J. 70 (2020), 9-19. DOI 10.21136/CMJ.2019.0156-18 | MR 4078344 | Zbl 07217119
[4] Gamba, I. M., Gualdani, M. P., Zhang, P.: On the blowing up of solutions to quantum hydrodynamic models on bounded domains. Monatsh Math. 157 (2009), 37-54. DOI 10.1007/s00605-009-0092-4 | MR 2504777 | Zbl 1173.35106
[5] Guo, B., Wang, G.: Blow-up of the smooth solution to quantum hydrodynamic models in $\mathbb R^d$. J. Differ. Equations 261 (2016), 3815-3842. DOI 10.1016/j.jde.2016.06.007 | MR 3532056 | Zbl 1354.35123
[6] Guo, B., Wang, G.: Blow-up of solutions to quantum hydrodynamic models in half space. J. Math. Phys. 58 (2017), Article ID 031505, 11 pages. DOI 10.1063/1.4978331 | MR 3626024 | Zbl 1359.76348
[7] Jiu, Q., Wang, Y., Xin, Z.: Remarks on blow-up of smooth solutions to the compressible fluid with constant and degenerate viscosities. J. Differ. Equations 259 (2015), 2981-3003. DOI 10.1016/j.jde.2015.04.007 | MR 3360663 | Zbl 1319.35194
[8] Lai, N.-A.: Blow up of classical solutions to the isentropic compressible Navier-Stokes equations. Nonlinear Anal., Real World Appl. 25 (2015), 112-117. DOI 10.1016/j.nonrwa.2015.03.005 | MR 3351014 | Zbl 1327.35299
[9] Lei, Z., Du, Y., Zhang, Q.: Singularities of solutions to compressible Euler equations with vacuum. Math. Res. Lett. 20 (2013), 41-50. DOI 10.4310/MRL.2013.v20.n1.a4 | MR 3126720 | Zbl 1284.35329
[10] Rozanova, O.: Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations. J. Differ. Equations 245 (2008), 1762-1774. DOI 10.1016/j.jde.2008.07.007 | MR 2433485 | Zbl 1154.35070
[11] Wang, G., Guo, B., Fang, S.: Blow-up of the smooth solutions to the compressible Navier-Stokes equations. Math. Methods Appl. Sci. 40 (2017), 5262-5272. DOI 10.1002/mma.4384 | MR 3689262 | Zbl 1383.35034
[12] Xin, Z.: Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Commun. Pure Appl. Math. 51 (1998), 229-240. DOI 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C | MR 1488513 | Zbl 0937.35134
[13] Xin, Z., Yan, W.: On blowup of classical solutions to the compressible Navier-Stokes equations. Commun. Math. Phys. 321 (2013), 529-541. DOI 10.1007/s00220-012-1610-0 | MR 3063918 | Zbl 1287.35059
Partner of
EuDML logo