Previous |  Up |  Next

Article

Keywords:
generalized Toeplitz operator; Schatten class; compactness; Bergman space; Berezin transform
Summary:
Let $\mu $ be a finite positive measure on the unit disk and let $j\geq 1$ be an integer. D. Suárez (2015) gave some conditions for a generalized Toeplitz operator $T_{\mu }^{(j)}$ to be bounded or compact. We first give a necessary and sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class for $1\leq p<\infty $ on the Bergman space $A^{2}$, and then give a sufficient condition for $T_{\mu }^{(j)}$ to be in the Schatten $p$-class $(0<p<1)$ on $A^{2}$. We also discuss the generalized Toeplitz operators with general bounded symbols. If $\varphi \in L^{\infty }(D, {\rm d}A)$ and $1<p<\infty $, we define the generalized Toeplitz operator $T_{\varphi }^{(j)}$ on the Bergman space $A^p$ and characterize the compactness of the finite sum of operators of the form $T_{\varphi _1}^{(j)}\cdots T_{\varphi _n}^{(j)}$.
References:
[1] Arazy, J., Fisher, S. D., Peetre, J.: Hankel operators on weighted Bergman spaces. Am. J. Math. 110 (1988), 989-1053. DOI 10.2307/2374685 | MR 0970119 | Zbl 0669.47017
[2] Engliš, M.: Toeplitz operators and group representations. J. Fourier Anal. Appl. 13 (2007), 243-265. DOI 10.1007/s00041-006-6009-x | MR 2334609 | Zbl 1128.47029
[3] Luecking, D. H.: Trace ideal criteria for Toeplitz operators. J. Funct. Anal. 73 (1987), 345-368. DOI 10.1016/0022-1236(87)90072-3 | MR 0899655 | Zbl 0618.47018
[4] Miao, J., Zheng, D.: Compact operators on Bergman spaces. Integral Equations Oper. Theory 48 (2004), 61-79. DOI 10.1007/s00020-002-1176-x | MR 2029944 | Zbl 1060.47036
[5] Roman, S.: The formula of Faa di Bruno. Am. Math. Mon. 87 (1980), 805-809. DOI 10.2307/2320788 | MR 0602839 | Zbl 0513.05009
[6] Simon, B.: Trace Ideals and Their Applications. London Mathematical Society Lecture Note Series 35. Cambridge University Press, Cambridge (1979). DOI 10.1090/surv/120 | MR 0541149 | Zbl 0423.47001
[7] Suárez, D.: Approximation and symbolic calculus for Toeplitz algebras on the Bergman space. Rev. Mat. Iberoam. 20 (2004), 563-610. DOI 10.4171/RMI/401 | MR 2073132 | Zbl 1057.32005
[8] Suárez, D.: A generalization of Toeplitz operators on the Bergman space. J. Oper. Theory 73 (2015), 315-332. DOI 10.7900/jot.2013nov28.2023 | MR 3346124 | Zbl 1399.32010
[9] Zhu, K.: Positive Toeplitz operators on the weighted Bergman spaces of bounded symmetric domains. J. Oper. Theory 20 (1988), 329-357. MR 1004127 | Zbl 0676.47016
[10] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226. Springer, New York (2005). DOI 10.1007/0-387-27539-8 | MR 2115155 | Zbl 1067.32005
[11] Zhu, K.: Operator Theory in Function Spaces. Mathematical Surveys and Monographs 138. American Mathematical Society, Providence (2007). DOI 10.1090/surv/138 | MR 2311536 | Zbl 1123.47001
[12] Zhu, K.: Schatten class Toeplitz operators on weighted Bergman spaces of the unit ball. New York J. Math. 13 (2007), 299-316. MR 2357717 | Zbl 1127.47029
Partner of
EuDML logo