Previous |  Up |  Next

Article

Keywords:
Fitting subgroup; Sylow subgroup; composition factor
Summary:
We show that if the average number of (nonnormal) Sylow subgroups of a finite group is less than $\frac {29}{4}$ then $G$ is solvable or $G/F(G)\cong A_5$. This generalizes an earlier result by the third author.
References:
[1] Group, GAP: GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra. Version 4.4. Available at http://www.gap-system.org (2005).
[2] Guralnick, R. M., Robinson, G. R.: On the commuting probability in finite groups. J. Algebra 300 (2006), 509-528 addendum ibid 319 2008 1822. DOI 10.1016/j.jalgebra.2005.09.044 | MR 2228209 | Zbl 1100.20045
[3] M. Hall, Jr.: On the number of Sylow subgroups in a finite group. J. Algebra 7 (1967), 363-371. DOI 10.1016/0021-8693(67)90076-2 | MR 0222159 | Zbl 0178.02102
[4] Isaacs, I. M., Loukaki, M., Moretó, A.: The average degree of an irreducible character of a finite group. Isr. J. Math. 197 (2013), 55-67. DOI 10.1007/s11856-013-0013-z | MR 3096606 | Zbl 1290.20006
[5] Moretó, A.: The average number of Sylow subgroups of a finite group. Math. Nachr. 287 (2014), 1183-1185. DOI 10.1002/mana.201300064 | MR 3231532 | Zbl 1310.20026
Partner of
EuDML logo