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Abstract. We show that if the average number of (nonnormal) Sylow subgroups of a finite
group is less than 29

4
then G is solvable or G/F (G) ∼= A5. This generalizes an earlier result

by the third author.
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1. Introduction

All groups considered in this paper are finite. Given a group G, we define the aver-

age class size of G to be acs(G) = |G|/k(G), where k(G) is the number of conjugacy

classes of G. Using this notation, Theorem 11 of [2] (which also follows from the

earlier results of Lescot, as mentioned in the addendum), asserts that if acs(G) < 40

3

then either G is solvable or G ∼= A5 × T . In particular, since acs(A5) = 12 this

implies that if acs(G) < 12 then G is solvable.

An analog of the final part of this result for Sylow numbers was considered

in [5]. Let us introduce some notation from [5] to be used in this note. Given

a prime p, νp(G) stands for the number of Sylow p-subgroups of G. Let S =
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{p prime : νp(G) > 1} and put asn(G) =
(

∑

p∈S

νp(G)
)

/

|S|. Theorem A of [5] as-

serts that if asn(G) < 7 then G is solvable. Our goal here is to extend this result to

include also the analog of the first part of the result of Lescot-Guralnick-Robinson.

Our main result is the following.

Theorem 1.1. Let G be a finite nonsolvable group. Assume that asn(G) < 29

4
.

Then G/F (G) ∼= A5. Furthermore, if Z(G) = 1 then G ∼= A5.

In this case, we cannot get a factorization as a direct product of A5 and a nilpotent

group because asn(SL(2, 5)) = asn(A7) = 7. We expect that it should be possible

to find C > 29

4
such that if G is nonsolvable and asn(G) < C then we still get

that G/F (G) ∼= A5. Our main aim in the proof, rather than trying to find the best

possible value of C, was to keep the proof as elementary as possible. In fact, as in [5],

Burnside’s paqb-theorem is the most advanced result that we are using.

We also prove the following result, which can be compared with Theorem B of [4].

Theorem 1.2. Let G be a finite group. Assume that asn(G) < 7

2
. Then G is

supersolvable. Furthermore, if Z(G) = 1, then G ∼= S3.

2. Proofs

We start with two elementary lemmas.

Lemma 2.1. If N is a normal subgroup of a finite group G, then νp(N)νp(G/N)

divides νp(G). In particular, if S1, . . . , St are the composition factors of G including

repetitions, then νp(S1) · . . . · νp(St) | νp(G).

P r o o f. See [3] for the first part. The second part is an immediate consequence.

�

Lemma 2.2. Let S be a simple subgroup of A7. Then S ∼= A5, A6, A7 or

PSL(2, 7). Furthermore, if A6, A7 or PSL(2, 7) is a composition factor of a finite

group G, then asn(G) > 89

6
.

P r o o f. The first part is a group theory exercise, or it can be checked with GAP,

see [1]. For the second part, assume first that S = A6. As another exercise or using

GAP, one can check that ν2(A6) = 45, ν3(A6) = 10 and ν5(A6) = 36. The average

of these three integers is 91

3
. Using Lemma 2.1, we get ν2(G) > 45, ν3(G) > 10 and

ν5(G) > 36. If we want to find a group G with asn(G) as low as possible among

the groups that satisfy these conditions, it is an arithmetic exercise (using Sylow’s
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Theorem) to check that we cannot do better than having ν7(G) = 8, ν11(G) = 12,

ν13(G) = 14, ν17(G) = 18 and ν19(G) = 20. In this case, asn(G) > 164

8
= 41

2
.

If S = A7 we can argue as in the previous case to see that asn(G) > 41

2
. (In fact,

it is much bigger.)

If S = PSL(2, 7), then ν2(S) = 21, ν3(S) = 28 and ν7(S) = 8. Arguing as in the

case when G = A6, we see that asn(G) > 89

6
. �

Now we are ready to prove Theorem 1.1.

P r o o f of Theorem 1.1. Let S be a nonabelian composition factor of G. Assume

first that νp(S) > 8 for every prime divisor p of |S|. Assume that 5 divides |S|.

Then ν5(G) > ν5(S) > 11 using Lemma 2.1 and Sylow’s Theorem. If 2 divides |S|,

then ν2(G) > ν2(S) > 9. Even if ν3(G) = 4 we get that the average of ν2(G), ν3(G)

and ν5(G) is at least 8, so asn(G) > 8, a contradiction. Therefore, 2 does not

divide |S|. If 3 divides |S|, then ν3(G) > ν3(S) > 10. As before, we get that the

average of ν2(G), ν3(G) and ν5(G) is at least 8, so asn(G) > 8, another contradiction.

But then all Sylow numbers that are bigger than 1 are at least 8, so asn(G) > 8. It

follows that 5 does not divide |S|.

If 6 divides |S|, then ν2(G) > ν2(S) > 9 and ν3(G) > ν3(S) > 10 (using Sylow’s

Theorem and the fact that νp(S) > 8 for every prime divisor p of |S|). As before,

one can see that this implies that asn(G) > 8. This contradiction and Burnside’s

Theorem imply that there exist two different primes u, v > 7 such that uv | |S|.

Arguing as in the last paragraph of the proof of Theorem 2.2 of [4], we get that

asn(G) > 39

5
> 29

4
. This is the final contradiction.

Therefore νp(S) < 8 for some prime divisor p of |S|. Then S has a proper subgroup

of index 6 7 and we deduce that S is isomorphic to a simple subgroup of S7. By

Lemma 2.2, we deduce that S = A5. Therefore, ν2(S) = 5, ν3(S) = 10 and ν5(S) = 6.

By Lemma 2.1, νp(S) | νp(G) for every prime p. Since asn(G) < 29

4
, it follows that

ν2(G) = 5, ν3(G) = 10 and ν5(G) = 6.

Assume that there exists a prime q > 7 that divides |G|. If νq(G) > 1 then

νq(G) > 8 and since the average of 5, 10, 6 and 8 is 29

4
, asn(G) > 29

4
. It follows that

νq(G) = 1 for every q > 7.

Let N be the largest normal solvable subgroup of G and letM/N be a chief factor

of G. We know that M/N is a direct product of copies of A5. Using Lemma 2.1, we

see that M/N = A5. Let C/N = CG/N (M/N). Notice that C/N ×M/N E G/N .

Using Lemma 2.1 again we see that C/N is solvable, so C = N . It follows that G/N

is isomorphic to a subgroup of Aut(A5) = S5. If G/N = S5 then ν2(G/N) = 15 and

asn(G) > 29

4
, a contradiction. Hence, G = M .

By Lemma 2.1, νp(N) = 1 for every prime p, so N is nilpotent. The first part of

the statement follows. Now, we assume that Z(G) = 1 and we want to prove that

1131



N = 1. By way of contradiction, assume that N > 1. Let R ∈ Sylr(N) for some

prime r | |N | and let P be a Sylow subgroup of G for some prime p ∈ {2, 3, 5}− {r}.

Since R E G, P normalizes R and RP 6 G. On the other hand, R 6 N 6 NG(P )

(otherwise νp(G) > νp(G/N) and we saw in the third paragraph of the proof that

this is not the case), so [P,R] = 1. Therefore, R centralizes all the Sylow p-subgroups

of G for all primes p 6= r. Since G/N is generated by its Sylow p-subgroups for any

p ∈ {2, 3, 5} it follows that Z(R) 6 Z(G). This contradicts the hypothesis Z(G) = 1.

It follows that G = A5. �

Finally, we prove Theorem 1.2.

P r o o f of Theorem 1.2. Notice that in order to have asn(G) < 7

2
, we must have

ν2(G) = 3, νp(G) = 1 for every prime p > 3. Therefore,G has a normal nilpotent Hall

2′-subgroup N and G = PN , where P ∈ Syl
2
(G). Since |G : NG(P )| = 3, we have

that |N : CN (P )| = |N : N ∩NG(P )| = 3. Since CN (P ) has its prime index in the

nilpotent subgroup N , we deduce that CN (P ) E N . Clearly, P normalizes CN (P ),

so CN (P ) E G. Observe that any chief series of N that contains CN (P ) consists

of normal subgroups of G. Extending this chief series to a chief series of G, we see

that G is supersolvable.

Assume now that Z(G) = 1. If CN (P ) > 1, we can take a minimal normal

subgroup M of N contained in CN (P ). This subgroup is central in G and this is

a contradiction. We conclude that CN (P ) = 1 so |N | = 3. Since Z(G) = 1, we

deduce that |P | = 2 and G = S3. �
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