[5] Cooper, S.:
Level 10 analogues of Ramanujan's series for $1/\pi$. J. Ramanujan Math. Soc. 27 (2012), 59-76.
MR 2933486 |
Zbl 1282.11032
[8] Frye, J., Garvan, F.:
Automatic proof of theta-function identities. Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory Texts and Monographs in Symbolic Computation. Springer, Cham (2019), 195-258.
DOI 10.1007/978-3-030-04480-0_10 |
MR 3889559
[9] Garvan, F.:
A $q$-product tutorial for a $q$-series MAPLE package. Sémin. Lothar. Comb. 42 (1999), Article ID B42d, 27 pages.
MR 1701583 |
Zbl 1010.11072
[14] Raghavan, S., Rangachari, S. S.:
On Ramanujan's elliptic integrals and modular identities. Number Theory and Related Topics Tata Institute of Fundamental Research Studies in Mathematics 12. Oxford University Press, Oxford (1989), 119-149.
MR 1441328 |
Zbl 0748.33013
[16] Ramanujan, S.:
The Lost Notebook and Other Unpublished Papers. Springer, Berlin; Narosa Publishing House, New Delhi (1988).
MR 0947735 |
Zbl 0639.01023
[17] Richmond, B., Szekeres, G.:
The Taylor coefficients of certain infinite products. Acta Sci. Math. 40 (1978), 347-369.
MR 0515217 |
Zbl 0397.10046
[21] Xia, E. X. W., Zhao, A. X. H.:
Generalizations of Hirschhorn's results on two remarkable $q$-series expansions. (to appear) in Exp. Math.
DOI 10.1080/10586458.2020.1712565