Previous |  Up |  Next

Article

Keywords:
Euler's sum of powers conjecture; elliptic curve; positive integer solution; positive rational solution
Summary:
We consider a variety of Euler's sum of powers conjecture, i.e., whether the Diophantine system $$ \begin{cases} n=a_{1}+a_{2}+\cdots +a_{s-1},\\ a_{1}a_{2}\cdots a_{s-1}(a_{1}+a_{2}+\cdots +a_{s-1})=b^{s} \end{cases} $$ has positive integer or rational solutions $n$, $b$, $a_i$, $i=1,2,\cdots ,s-1$, $s\geq 3.$ Using the theory of elliptic curves, we prove that it has no positive integer solution for $s=3$, but there are infinitely many positive integers $n$ such that it has a positive integer solution for $s\geq 4$. As a corollary, for $s\geq 4$ and any positive integer $n$, the above Diophantine system has a positive rational solution. Meanwhile, we give conditions such that it has infinitely many positive rational solutions for $s\geq 4$ and a fixed positive integer $n$.
References:
[1] Cai, T., Chen, D.: A new variant of the Hilbert-Waring problem. Math. Comput. 82 (2013), 2333-2341. DOI 10.1090/s0025-5718-2013-02685-3 | MR 3073204 | Zbl 1284.11127
[2] Cai, T., Chen, D., Zhang, Y.: A new generalization of Fermat's last theorem. J. Number Theory 149 (2015), 33-45. DOI 10.1016/j.jnt.2014.09.014 | MR 3295999 | Zbl 1369.11026
[3] Cohen, H.: Number Theory. Vol. I: Tools and Diophantine Equations. Graduate Texts in Mathematics 239. Springer, New York (2007). DOI 10.1007/978-0-387-49923-9 | MR 2312337 | Zbl 1119.11001
[4] Elkies, N. D.: On $A^4+B^4+C^4=D^4$. Math. Comput. 184 (1988), 825-835. DOI 10.1090/S0025-5718-1988-0930224-9 | MR 930224 | Zbl 0698.10010
[5] Guy, R. K.: Unsolved Problems in Number Theory. Problem Books in Mathematics. Springer, New York (2004). DOI 10.1007/978-1-4899-3585-4 | MR 2076335 | Zbl 1058.11001
[6] Lander, L. J., Parkin, T. R.: Counterexample to Euler's conjecture on sums of like powers. Bull. Am. Math. Soc. 72 (1966), 1079. DOI 10.1090/S0002-9904-1966-11654-3 | MR 0197389 | Zbl 0145.04903
[7] Magma computational algebra system for algebra, number theory and geometry. Available at http://magma.maths.usyd.edu.au/magma/
[8] Mordell, L. J.: Diophantine Equations. Pure and Applied Mathematics 30. Academic Press, London (1969). MR 0249355 | Zbl 0188.34503
[9] Rowland, E. S.: Elliptic curve and integral solutions to $A^4+B^4+C^4=D^4$. (2004), 7 pages.
[10] Skolem, T.: Diophantische Gleichungen. Ergebnisse der Mathematik und ihrer Grenzgebiete 5. Springer, Berlin (1938), German. Zbl 0018.29302
[11] Ulas, M.: On some Diophantine systems involving symmetric polynomials. Math. Comput. 83 (2014), 1915-1930. DOI 10.1090/S0025-5718-2013-02778-0 | MR 3194135 | Zbl 1290.11064
Partner of
EuDML logo