[1] Ayupov, Sh., Arzikulov, F.:
$2$-local derivations on semi-finite von Neumann algebras. Glasgow Mathematical Journal, 56, 1, 2014, 9-12, Cambridge University Press,
DOI 10.1017/S0017089512000870
[2] Ayupov, Sh., Arzikulov, F.:
$2$-Local derivations on associative and Jordan matrix rings over commutative rings. Linear Algebra and its Applications, 522, 2017, 28-50, Elsevier,
DOI 10.1016/j.laa.2017.02.012
[3] Ayupov, Sh., Kudaybergenov, K.:
$2$-local derivations and automorphisms on $B(H)$. Journal of Mathematical Analysis and Applications, 395, 1, 2012, 15-18, Elsevier,
DOI 10.1016/j.jmaa.2012.04.064
[4] Ayupov, Sh., Kudaybergenov, K.:
$2$-local derivations on von Neumann algebras. Positivity, 19, 3, 2015, 445-455, Springer,
DOI 10.1007/s11117-014-0307-3
[5] Ayupov, Sh., Kudaybergenov, K.:
$2$-Local automorphisms on finite-dimensional Lie algebras. Linear Algebra and its Applications, 507, 2016, 121-131, Elsevier,
DOI 10.1016/j.laa.2016.05.042
[6] Ayupov, Sh., Kudaybergenov, K.:
Local derivations on finite-dimensional Lie algebras. Linear Algebra and its Applications, 493, 2016, 381-398, Elsevier,
DOI 10.1016/j.laa.2015.11.034
[7] Ayupov, Sh., Kudaybergenov, K., Omirov, B.:
Local and 2-local derivations and automorphisms on simple Leibniz algebras. Bulletin of the Malaysian Mathematical Sciences Society, 43, 3, 2020, 2199-2234, Springer,
DOI 10.1007/s40840-019-00799-5
[8] Ayupov, Sh., Kudaybergenov, K., Rakhimov, I.:
2-Local derivations on finite-dimensional Lie algebras. Linear Algebra and its Applications, 474, 2015, 1-11, Elsevier,
DOI 10.1016/j.laa.2015.01.016
[9] Chen, Z., Wang, D.:
$2$-Local automorphisms of finite-dimensional simple Lie algebras. Linear Algebra and its Applications, 486, 2015, 335-344, Elsevier,
DOI 10.1016/j.laa.2015.08.025
[10] Costantini, M.:
Local automorphisms of finite dimensional simple Lie algebras. Linear Algebra and its Applications, 562, 2019, 123-134, Elsevier,
DOI 10.1016/j.laa.2018.10.009
[12] Kantor, I.L.: Certain generalizations of Jordan algebras (Russian). Trudy Sem. Vektor. Tenzor. Anal., 16, 1972, 407-499,
[13] Kantor, I.L.:
Extension of the class of Jordan algebras. Algebra and Logic, 28, 2, 1989, 117-121, Springer,
DOI 10.1007/BF01979375
[14] Kantor, I.L.:
The universal conservative algebra. Siberian Mathematical Journal, 31, 3, 1990, 388-395, Springer,
DOI 10.1007/BF00970345
[15] Kaygorodov, I., Lopatin, A., Popov, Yu.:
Conservative algebras of $2$-dimensional algebras. Linear Algebra and its Applications, 486, 2015, 255-274, Elsevier,
DOI 10.1016/j.laa.2015.08.011
[16] Kaygorodov, I., Volkov, Yu.: Conservative algebras of $2$-dimensional algebras, II. Communications in Algebra, 45, 8, 2017, 3413-3421, Taylor & Francis,
[17] Kaygorodov, I., Popov, Yu., Pozhidaev, A.:
The universal conservative superalgebra. Communications in Algebra, 47, 10, 2019, 4066-4076, Taylor & Francis,
DOI 10.1080/00927872.2019.1576189
[18] Kaygorodov, I., Khudoyberdiyev, A., Sattarov, A.:
One-generated nilpotent terminal algebras. Communications in Algebra, 48, 10, 2020, 4355-4390, Taylor & Francis,
DOI 10.1080/00927872.2020.1761979
[19] Kaygorodov, I., Khrypchenko, M., Popov, Yu.:
The algebraic and geometric classification of nilpotent terminal algebras. Journal of Pure and Applied Algebra, 225, 6, 2021, 106625, Elsevier,
DOI 10.1016/j.jpaa.2020.106625
[20] Khrypchenko, M.:
Local derivations of finitary incidence algebras. Acta Mathematica Hungarica, 154, 1, 2018, 48-55, Springer,
DOI 10.1007/s10474-017-0758-7
[21] Kim, S., Kim, J.:
Local automorphisms and derivations on $\mathbb {M}_n$. Proceedings of the American Mathematical Society, 132, 5, 2004, 1389-1392,
DOI 10.1090/S0002-9939-03-07171-5
[22] Larson, D.R., Sourour, A.R.: Local derivations and local automorphisms of $\mathcal {B}(X)$. Proceedings of Symposia in Pure Mathematics, 51, 2, 1990, 187-194,
[23] Lin, Y., Wong, T.:
A note on 2-local maps. Proceedings of the Edinburgh Mathematical Society, 49, 3, 2006, 701-708, Cambridge University Press,
DOI 10.1017/S0013091504001142
[24] Petersson, H.P.: The classification of two-dimensional nonassociative algebras. Resultate der Mathematik, 37, 1--2, 2000, 120-154, Citeseer,
[25] Popov, Yu.:
Conservative algebras and superalgebras: a survey. Communications in Mathematics, 28, 2, 2020, 231-251, Sciendo,
DOI 10.2478/cm-2020-0018
[26] Šemrl, P.:
Local automorphisms and derivations on $\mathcal {B}(H)$. Proceedings of the American Mathematical Society, 125, 9, 1997, 2677-2680,
DOI 10.1090/S0002-9939-97-04073-2