Previous |  Up |  Next

Article

Keywords:
Derivations; iterative higher derivations; rings of differential operators; Weyl algebra
Summary:
We connect the theorems of Rentschler \cite {rR68} and Dixmier \cite {jD68} on locally nilpotent derivations and automorphisms of the polynomial ring $A _0$ and of the Weyl algebra $A _1$, both over a field of characteristic zero, by establishing the same type of results for the family of algebras $$A _h=\langle x, y\mid yx-xy=h(x)\rangle \,,$$ where $h$ is an arbitrary polynomial in $x$. In the second part of the paper we consider a field $\mathbb{F}$ of prime characteristic and study $\mathbb{F}[t]$\HH comodule algebra structures on $A _h$. We also compute the Makar-Limanov invariant of absolute constants of $A _h$ over a field of arbitrary characteristic and show how this subalgebra determines the automorphism group of $A _h$.
References:
[1] J. Alev, F. Dumas: Invariants du corps de Weyl sous l'action de groupes finis. Communications in Algebra, 25, 5, 1997, 1655-1672, Taylor & Francis, DOI 10.1080/00927879708825943
[2] Bavula, V., Jordan, D.: Isomorphism problems and groups of automorphisms for generalized Weyl algebras. Transactions of the American Mathematical Society, 353, 2, 2001, 769-794, DOI 10.1090/S0002-9947-00-02678-7
[3] Belov-Kanel, A., Kontsevich, M.: The Jacobian conjecture is stably equivalent to the Dixmier conjecture. Moscow Mathematical Journal, 7, 2, 2007, 209-218, DOI 10.17323/1609-4514-2007-7-2-209-218
[4] Benkart, G., Lopes, S.A., Ondrus, M.: A parametric family of subalgebras of the Weyl algebra II. Irreducible modules. Recent developments in algebraic and combinatorial aspects of representation theory, vol. 602 of Contemporary Mathematics, 2013, 73-98, American Mathematical Society, DOI 10.1090/conm/602/12027
[5] Benkart, G., Lopes, S.A., Ondrus, M.: Derivations of a parametric family of subalgebras of the Weyl algebra. Journal of Algebra, 424, 2015, 46-97, Elsevier, DOI 10.1016/j.jalgebra.2014.11.007
[6] Benkart, G., Lopes, S.A., Ondrus, M.: A parametric family of subalgebras of the Weyl algebra I. Structure and automorphisms. Transactions of the American Mathematical Society, 367, 3, 2015, 1993-2021, DOI 10.1090/S0002-9947-2014-06144-8
[7] Crachiola, A., Makar-Limanov, L.: On the rigidity of small domains. Journal of Algebra, 284, 1, 2005, 1-12, Elsevier, DOI 10.1016/j.jalgebra.2004.09.015
[8] Crachiola, A.J.: The hypersurface $x+x^2y+z^2+t^3=0$ over a field of arbitrary characteristic. Proceedings of the American Mathematical Society, 134, 5, 2006, 1289-1298, DOI 10.1090/S0002-9939-05-08171-2
[9] Crode, S.D., Shestakov, I.P.: Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, 48, 7, 2020, 3091-3098, Taylor & Francis, DOI 10.1080/00927872.2020.1729363
[10] Dixmier, J.: Sur les algèbres de Weyl. Bulletin de la Société mathématique de France, 96, 1968, 209-242,
[11] Dixmier, J.: Enveloping algebras. 1996, American Mathematical Society, Vol. 11 of Graduate Studies in Mathematics. Revised reprint of the 1977 translation..
[12] Drensky, V., Makar-Limanov, L.: Locally nilpotent derivations of free algebra of rank two. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 15, 2019, Paper No. 091, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications,
[13] Jung, H.W.E.: Über ganze birationale Transformationen der Ebene. Journal für die Reine und Angewandte Mathematik, 1942, 184, 1942, 161-174, De Gruyter,
[14] Kaygorodov, I., Shestakov, I., Umirbaev, U.: Free generic Poisson fields and algebras. Communications in Algebra, 46, 4, 2018, 1799-1812, Taylor & Francis, DOI 10.1080/00927872.2017.1358269
[15] Makar-Limanov, L.: On the hypersurface $x+x^2y+z^2+t^3=0$ in $\mathbb {C}^4$ or a $\mathbb {C}^3$-like threefold which is not ${C}^3$. Israel Journal of Mathematics, 96, 2, 1996, 419-429, Springer, DOI 10.1007/BF02937314
[16] Makar-Limanov, L., Turusbekova, U., Umirbaev, U.: Automorphisms and derivations of free Poisson algebras in two variables. Journal of Algebra, 322, 9, 2009, 3318-3330, Elsevier, DOI 10.1016/j.jalgebra.2008.01.005
[17] Miyanishi, M.: $G_{a}$-action of the affine plane. Nagoya Mathematical Journal, 41, 1971, 97-100, Cambridge University Press, DOI 10.1017/S0027763000014094
[18] Rentschler, R.: Opérations du groupe additif sur le plan affine. Comptes rendus de l'Académie des Sciences, Sér. A-B, 267, 1968, 384-387,
[19] Restuccia, G., Schneider, H.J.: On actions of infinitesimal group schemes. Journal of Algebra, 261, 2, 2003, 229-244, Academic Press, DOI 10.1016/S0021-8693(02)00683-X
[20] Restuccia, G., Schneider, H.J.: On actions of the additive group on the Weyl algebra. Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 83, 1, 2005, 9pp,
[21] Tsuchimoto, Y.: Endomorphisms of Weyl algebra and $p$-curvatures. Osaka Journal of Mathematics, 42, 2, 2005, 435-452, Osaka University and Osaka City University, Departments of Mathematics,
[22] Essen, A. Van den: Polynomial automorphisms and the Jacobian conjecture. 190, 2000, Birkhäuser, Progress in Mathematics, vol. 190..
Partner of
EuDML logo