[3] Duan, H., Rees, E. G.:
Functions whose critical set consists of two connected manifolds. Bol. Soc. Mat. Mex., II. Ser. 37 (1992), 139-149.
MR 1317568 |
Zbl 0867.57025
[6] Gelbukh, I.:
Approximation of metric spaces by Reeb graphs: Cycle rank of a Reeb graph, the co-rank of the fundamental group, and large components of level sets on Riemannian manifolds. Filomat 33 (2019), 2031-2049.
DOI 10.2298/FIL1907031G |
MR 4036359
[7] Hurtubise, D. E.:
Three approaches to Morse-Bott homology. Afr. Diaspora J. Math. 14 (2012), 145-177.
MR 3093241 |
Zbl 1311.57043
[11] Martínez-Alfaro, J., Meza-Sarmiento, I. S., Oliveira, R. D. S.:
Topological classification of simple Morse Bott functions on surfaces. Real and Complex Singularities Contemporary Mathematics 675. American Mathematical Society, Providence (2016), 165-179.
DOI 10.1090/conm/675/13590 |
MR 3578724 |
Zbl 1362.37078
[12] Martínez-Alfaro, J., Meza-Sarmiento, I. S., Oliveira, R. D. S.:
Singular levels and topological invariants of Morse-Bott foliations on non-orientable surfaces. Topol. Methods Nonlinear Anal. 51 (2018), 183-213.
DOI 10.12775/TMNA.2017.051 |
MR 3784742 |
Zbl 1393.37057
[15] Panov, D.:
Immersion in $R^3$ of a Klein bottle with Morse-Bott height function without centers. MathOverflow Available at
https://mathoverflow.net/q/343792 2019.
[18] Saeki, O.:
Reeb spaces of smooth functions on manifolds. (to appear) in Int. Math. Res. Not.
DOI 10.1093/imrn/rnaa301