Previous |  Up |  Next

Article

Keywords:
uniform regularity; MHD-$P1$; compressible
Summary:
It is well known that people can derive the radiation MHD model from an \hbox {MHD-$P1$} approximate model. As pointed out by F. Xie and C. Klingenberg (2018), the uniform regularity estimates play an important role in the convergence from an MHD-$P1$ approximate model to the radiation MHD model. The aim of this paper is to prove the uniform regularity of strong solutions to an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics. Here we use the bilinear commutator and product estimates to obtain our result.
References:
[1] Alazard, T.: Low Mach number limit of the full Navier-Stokes equations. Arch. Ration. Mech. Anal. 180 (2006), 1-73. DOI 10.1007/s00205-005-0393-2 | MR 2211706 | Zbl 1108.76061
[2] Chandrasekhar, S.: Radiative Transfer. Dover Publications, New York (1960). MR 0111583 | Zbl 0037.43201
[3] Danchin, R., Ducomet, B.: The low Mach number limit for a barotropic model of radiative flow. SIAM J. Math. Anal. 48 (2016), 1025-1053. DOI 10.1137/15M1009081 | MR 3473591 | Zbl 1339.35236
[4] Dou, C., Jiang, S., Ou, Y.: Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain. J. Differ. Equations 258 (2015), 379-398. DOI 10.1016/j.jde.2014.09.017 | MR 3274763 | Zbl 1310.35187
[5] Fan, J., Li, F., Nakamura, G.: Non-relativistic and low Mach number limits of two $P1$ approximation model arising in radiation hydrodynamics. Commun. Math. Sci. 14 (2016), 2023-2036. DOI 10.4310/CMS.2016.v14.n7.a11 | MR 3549360 | Zbl 1353.35031
[6] Fan, J., Li, F., Nakamura, G.: Local well-posedness and blow-up criterion for a compressible Navier-Stokes-Fourier-$P1$ approximate model arising in radiation hydrodynamics. Math. Methods Appl. Sci. 40 (2017), 6987-6997. DOI 10.1002/mma.4506 | MR 3742109 | Zbl 1387.35451
[7] Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and its Applications 26. Oxford University Press, Oxford (2004). DOI 10.1093/acprof:oso/9780198528388.001.0001 | MR 2040667 | Zbl 1080.76001
[8] Feireisl, E.: On the motion of a viscous, compressible, and heat conducting fluid. Indiana Univ. Math. J. 53 (2004), 1705-1738. DOI 10.1512/iumj.2004.53.2510 | MR 2106342 | Zbl 1087.35078
[9] Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3 (2001), 358-392. DOI 10.1007/PL00000976 | MR 1867887 | Zbl 0997.35043
[10] Gong, H., Li, J., Liu, X.-G., Zhang, X.: Local well-posedness of isentropic compressible Navier-Stokes equations with vacuum. Commun. Math. Sci. 18 (2020), 1891-1909. DOI 10.4310/CMS.2020.v18.n7.a4 | MR 4195559
[11] He, F., Fan, J., Zhou, Y.: Local well-posedness and blow-up criterion for a compressible Navier-Stokes-$P1$ approximate model arising in radiation hydrodynamics. ZAMM, Z. Angew. Math. Mech. 98 (2018), 1632-1641. DOI 10.1002/zamm.201700142 | MR 3854726
[12] Huang, X.: On local strong and classical solutions to the three-dimensional barotropic compressible Navier-Stokes equations with vacuum. (to appear) in Sci. China, Math. DOI 10.1007/s11425-019-9755-3
[13] Jiang, S., Li, F., Xie, F.: Non-relativistic limit of the compressible Navier-Stokes-Fourier-$P1$ approximation model arising in radiation hydrodynamics. SIAM J. Math. Anal. 47 (2015), 3726-3746. DOI 10.1137/140987596 | MR 3403137 | Zbl 1331.35262
[14] Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41 (1988), 891-907. DOI 10.1002/cpa.3160410704 | MR 0951744 | Zbl 0671.35066
[15] Métivier, G., Schochet, S.: The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158 (2001), 61-90. DOI 10.1007/PL00004241 | MR 1834114 | Zbl 0974.76072
[16] Novotný, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications 27. Oxford University Press, Oxford (2004). MR 2084891 | Zbl 1088.35051
[17] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78. Birkhäuser, Basel (1983). DOI 10.1007/978-3-0346-0416-1 | MR 0781540 | Zbl 0546.46027
[18] Vol'pert, A. I., Khudyaev, S. I.: Cauchy problem for composite systems of nonlinear differential equations. Mat. Sb., N. Ser. 87 (1972), 504-528 Russian. DOI 10.1070/SM1972v016n04ABEH001438 | MR 0390528 | Zbl 0239.35017
[19] Xie, F., Klingenberg, C.: A limit problem for three-dimensional ideal compressible radiation magneto-hydrodynamics. Anal. Appl., Singap. 16 (2018), 85-102. DOI 10.1142/S0219530516500238 | MR 3716736 | Zbl 1386.35361
Partner of
EuDML logo