[6] Fan, J., Li, F., Nakamura, G.:
Local well-posedness and blow-up criterion for a compressible Navier-Stokes-Fourier-$P1$ approximate model arising in radiation hydrodynamics. Math. Methods Appl. Sci. 40 (2017), 6987-6997.
DOI 10.1002/mma.4506 |
MR 3742109 |
Zbl 1387.35451
[10] Gong, H., Li, J., Liu, X.-G., Zhang, X.:
Local well-posedness of isentropic compressible Navier-Stokes equations with vacuum. Commun. Math. Sci. 18 (2020), 1891-1909.
DOI 10.4310/CMS.2020.v18.n7.a4 |
MR 4195559
[11] He, F., Fan, J., Zhou, Y.:
Local well-posedness and blow-up criterion for a compressible Navier-Stokes-$P1$ approximate model arising in radiation hydrodynamics. ZAMM, Z. Angew. Math. Mech. 98 (2018), 1632-1641.
DOI 10.1002/zamm.201700142 |
MR 3854726
[12] Huang, X.:
On local strong and classical solutions to the three-dimensional barotropic compressible Navier-Stokes equations with vacuum. (to appear) in Sci. China, Math.
DOI 10.1007/s11425-019-9755-3
[13] Jiang, S., Li, F., Xie, F.:
Non-relativistic limit of the compressible Navier-Stokes-Fourier-$P1$ approximation model arising in radiation hydrodynamics. SIAM J. Math. Anal. 47 (2015), 3726-3746.
DOI 10.1137/140987596 |
MR 3403137 |
Zbl 1331.35262
[16] Novotný, A., Straškraba, I.:
Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications 27. Oxford University Press, Oxford (2004).
MR 2084891 |
Zbl 1088.35051