Previous |  Up |  Next

Article

Keywords:
Freiman ideal; number of generator; power of ideal; Ratliff-Rush closure
Summary:
We provide a construction of monomial ideals in $R=K[x,y]$ such that $\mu (I^{2})< \nobreak \mu (I)$, where $\mu $ denotes the least number of generators. This construction generalizes the main result of S. Eliahou, J. Herzog, M. Mohammadi Saem (2018). Working in the ring $R$, we generalize the definition of a Freiman ideal which was introduced in J. Herzog, G. Zhu (2019) and then we give a complete characterization of such ideals. A particular case of this characterization leads to some further investigations on $\mu (I^{k})$ that generalize some results of\/ S. Eliahou, J. Herzog, M. Mohammadi Saem (2018), J. Herzog, M. Mohammadi Saem, N. Zamani (2019), and J. Herzog, A. Asloob Qureshi, M. Mohammadi Saem (2019).
References:
[1] Al-Ayyoub, I.: An algorithm for computing the Ratliff-Rush closure. J. Algebra Appl. 8 (2009), 521-532. DOI 10.1142/s0219498809003473 | MR 2555518 | Zbl 1174.13011
[2] Al-Ayyoub, I.: On the reduction numbers of monomial ideals. J. Algebra Appl. 19 (2020), Article ID 2050201, 27 pages. DOI 10.1142/S0219498820502011 | MR 4140141 | Zbl 07272746
[3] Al-Ayyoub, I., Jaradat, M., Al-Zoubi, K.: A note on the ascending chain condition of ideals. J. Algebra Appl. 19 (2020), Article ID 2050135, 19 pages. DOI 10.1142/S0219498820501352 | MR 4129182 | Zbl 07227845
[4] Decker, W., Greuel, G-M., Pfister, G., Schönemann, H.: Singular 4-0-2: A computer algebra system for polynomial computations. Available at http://www.singular.uni-kl.de (2015). MR 1413182
[5] Eliahou, S., Herzog, J., Saem, M. M.: Monomial ideals with tiny squares. J. Algebra 514 (2018), 99-112. DOI 10.1016/j.jalgebra.2018.07.037 | MR 3853060 | Zbl 1403.13033
[6] Freiman, G. A.: Foundations of a Structural Theory of Set Addition. Translations of Mathematical Monographs 37. American Mathematical Society, Providence (1973). DOI 10.1090/mmono/037 | MR 0360496 | Zbl 0271.10044
[7] Herzog, J., Hibi, T.: Monomial Ideals. Graduate Text in Mathematics 206. Springer, London (2011). DOI 10.1007/978-0-85729-106-6 | MR 2724673 | Zbl 1206.13001
[8] Herzog, J., Qureshi, A. A., Saem, M. M.: The fiber cone of a monomial ideal in two variables. J. Symb. Comput. 94 (2019), 52-69. DOI 10.1016/j.jsc.2018.06.022 | MR 3945057 | Zbl 1430.13047
[9] Herzog, J., Saem, M. M., Zamani, N.: The number of generators of powers of an ideal. Int. J. Algebra Comput. 29 (2019), 827-847. DOI 10.1142/s0218196719500309 | MR 3978117 | Zbl 1423.13105
[10] Herzog, J., Zhu, G.: Freiman ideals. Commun. Algebra 47 (2019), 407-423. DOI 10.1080/00927872.2018.1477948 | MR 3924789 | Zbl 1410.13007
[11] Swanson, I., Huneke, C.: Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series 336. Cambridge University Press, Cambridge (2006). MR 2266432 | Zbl 1117.13001
Partner of
EuDML logo