Previous |  Up |  Next

Article

Keywords:
SS-supplemented subgroup; maximal subgroup; solvable group; minimal subgroup
Summary:
A subgroup $H$ of a finite group $G$ is said to be SS-supplemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K$ is S-quasinormal in $K$. We analyze how certain properties of SS-supplemented subgroups influence the structure of finite groups. Our results improve and generalize several recent results.
References:
[1] Asaad, M., Ballester-Bolinches, A., Aguilera, M. C. Pedraza: A note on minimal subgroups of finite groups. Commun. Algebra 24 (1996), 2771-2776. DOI 10.1080/00927879608542654 | MR 1393283 | Zbl 0856.20015
[2] Baer, R.: Classes of finite groups and their properties. Ill. J. Math. 1 (1957), 115-187. DOI 10.1215/ijm/1255379396 | MR 0087655 | Zbl 0077.03003
[3] Ballester-Bolinches, A.: $h$-normalizers and local definition of saturated formation of finite groups. Isr. J. Math. 67 (1989), 312-326. DOI 10.1007/bf02764949 | MR 1029905 | Zbl 0689.20036
[4] Doerk, K., Hawkes, T.: Finite Soluble Groups. De Gruyter Expositions in Mathematics 4. Walter de Gruyter, Berlin (1992). DOI 10.1515/9783110870138 | MR 1169099 | Zbl 0753.20001
[5] Dornhoff, L.: $M$-groups and 2-groups. Math. Z. 100 (1967), 226-256. DOI 10.1007/BF01109806 | MR 0217174 | Zbl 0157.35503
[6] Guo, X., Lu, J.: On $SS$-supplemented subgroups of finite groups and their properties. Glasg. Math. J. 54 (2012), 481-491. DOI 10.1017/s0017089512000079 | MR 2965394 | Zbl 1256.20018
[7] Guo, X., Shum, K. P.: Cover-avoidance properties and the stucture of finite groups. J. Pure Appl. Algebra 181 (2003), 297-308. DOI 10.1016/s0022-4049(02)00327-4 | MR 1975303 | Zbl 1028.20014
[8] Huppert, B.: Endliche Gruppen I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134. Springer, Berlin (1967), German. DOI 10.1007/978-3-642-64981-3 | MR 0224703 | Zbl 0217.07201
[9] Itô, N.: Über eine zur Frattini-Gruppe duale Bildung. Nagoya Math. J. 9 (1955), 123-127 German. DOI 10.1017/s0027763000023369 | MR 0074410 | Zbl 0066.01401
[10] Kegel, O. H.: Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z. 78 (1962), 205-221 German. DOI 10.1007/bf01195169 | MR 0147527 | Zbl 0102.26802
[11] Lu, J., Guo, X., Li, X.: The influence of minimal subgroups on the stucture of finite groups. J. Algebra Appl. 12 (2013), Article ID 1250189, 8 pages. DOI 10.1142/s0219498812501897 | MR 3037264 | Zbl 1270.20020
[12] Lu, J., Qiu, Y.: On solvability of finite groups with some $SS$-supplemented subgroups. Czech. Math. J. 65 (2015), 427-433. DOI 10.1007/s10587-015-0186-1 | MR 3360437 | Zbl 1363.20009
[13] Mukherjee, N. P., Bhattacharya, P.: On the intersection of a class of maximal subgroups of a finite group. Can. J. Math. 39 (1987), 603-611. DOI 10.4153/cjm-1987-028-3 | MR 0905746 | Zbl 0619.20007
[14] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80. Springer, New York (1982). DOI 10.1007/978-1-4419-8594-1 | MR 0648604 | Zbl 0483.20001
[15] Rose, J.: On finite insolvable groups with nilpotent maximal subgroups. J. Algebra 48 (1977), 182-196. DOI 10.1016/0021-8693(77)90301-5 | MR 0460457 | Zbl 0364.20034
[16] Schmid, P.: Subgroups permutable with all Sylow subgroups. J. Algebra 207 (1998), 285-293. DOI 10.1006/jabr.1998.7429 | MR 1643106 | Zbl 0910.20015
[17] Skiba, A. N.: On weakly $s$-permutable subgroups of finite groups. J. Algebra 315 (2007), 192-209. DOI 10.1016/j.jalgebra.2007.04.025 | MR 2344341 | Zbl 1130.20019
Partner of
EuDML logo